skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Excited-state proton transfer relieves antiaromaticity in molecules
Baird’s rule explains why and when excited-state proton transfer (ESPT) reactions happen in organic compounds. Bifunctional compounds that are [4 n + 2] π-aromatic in the ground state, become [4 n + 2] π-antiaromatic in the first 1 ππ* states, and proton transfer (either inter- or intramolecularly) helps relieve excited-state antiaromaticity. Computed nucleus-independent chemical shifts (NICS) for several ESPT examples (including excited-state intramolecular proton transfers (ESIPT), biprotonic transfers, dynamic catalyzed transfers, and proton relay transfers) document the important role of excited-state antiaromaticity. o- Salicylic acid undergoes ESPT only in the “antiaromatic” S 1 ( 1 ππ*) state, but not in the “aromatic” S 2 ( 1 ππ*) state. Stokes’ shifts of structurally related compounds [e.g., derivatives of 2-(2-hydroxyphenyl)benzoxazole and hydrogen-bonded complexes of 2-aminopyridine with protic substrates] vary depending on the antiaromaticity of the photoinduced tautomers. Remarkably, Baird’s rule predicts the effect of light on hydrogen bond strengths; hydrogen bonds that enhance (and reduce) excited-state antiaromaticity in compounds become weakened (and strengthened) upon photoexcitation.  more » « less
Award ID(s):
1751370
PAR ID:
10134451
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
41
ISSN:
0027-8424
Page Range / eLocation ID:
20303 to 20308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Watson–Crick A·T and G·C base pairs are not only electronically complementary, but also photochemically complementary. Upon UV irradiation, DNA base pairs undergo efficient excited-state deactivation through electron driven proton transfer (EDPT), also known as proton-coupled electron transfer (PCET), at a rate too fast for other reactions to take place. Why this process occurs so efficiently is typically reasoned based on the oxidation and reduction potentials of the bases in their electronic ground states. Here, we show that the occurrence of EDPT can be traced to a reversal in the aromatic/antiaromatic character of the base upon photoexcitation. The Watson–Crick A·T and G·C base pairs are aromatic in the ground state, but the purines become highly antiaromatic and reactive in the first 1 ππ* state, and transferring an electron and a proton to the pyrimidine relieves this excited-state antiaromaticity. Even though proton transfer proceeds along the coordinate of breaking a N–H σ-bond, the chromophore is the π-system of the base, and EDPT is driven by the strive to alleviate antiaromaticity in the π-system of the photoexcited base. The presence and absence of alternative excited-state EDPT routes in base pairs also can be explained by sudden changes in their aromatic and antiaromatic character upon photoexcitation. 
    more » « less
  2. null (Ed.)
    Photoacids like substituted naphthalenes (X = OH, NH 3 + , COOH) are aromatic in the S 0 state and antiaromatic in the S 1 state. Nucleus independent chemical shifts analyses reveal that deprotonation relieves antiaromaticity in the excited conjugate base, and that the degree of “antiaromaticity relief” explains why some photoacids are stronger than others. 
    more » « less
  3. In the title double proton-transfer salt, C 12 H 12 N 2 2+ ·2C 8 H 7 O 4 − , consisting of a 1:2 ratio of 4,4'-(ethene-1,2-diyl)dipyridinium cations ( trans bipyridinium ethylene) to 2-hydroxy-3-methoxybenzoate anions ( o -vanillate), the complete cation is generated by crystallographic inversion symmetry and it is linked to adjacent o -vanillate anions by N—H...O hydrogen bonds, forming trimolecular assemblies. The trimers are linked by C—H...O hydrogen bonds as well as aromatic π–π stacking interactions into a three-dimensional network. The anion features an intramolecular O—H...O hydrogen bond. 
    more » « less
  4. Abstract Sunlight‐driven photochemical reactions are an important tool for sustainable organic synthesis. However, compared with ground states, for which the effects of structure on properties and reactivity are well established, the understanding of excited states is limited. In particular, an improved understanding of aromaticity and antiaromaticity in excited states is necessary to develop strategic photochemical methods for synthesizing polycyclic aromatic compounds. Herein, using density functional theory (DFT)‐optimized structures, the ground singlet (S0) and lowest triplet (T1) states of coronene and corannulene were compared. Bond length analysis demonstrated that both triplet corannulene and triplet coronene bear a partial resemblance to benzene. Nucleus‐independent chemical shift (NICS(0), NICS(1.7)ZZ, NICS scans) and anisotropy of the induced current density (ACID) calculations were carried out to compare the induced magnetic currents in these molecules. This analysis demonstrated rather weak π‐conjugation and partial antiaromaticity in the S0state of each molecule. In contrast, a combination of circular induced currents and pronounced antiaromaticity was found in the T1state of each molecule. However, the T1of corannulene exhibited higher stability, which should facilitate functionalization. Consequently, corannulene is considered more suitable for photochemical applications. 
    more » « less
  5. null (Ed.)
    The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0 -SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative –OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is “shared” by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0 -SB* imine lone pair stabilized by the solvent environment. 
    more » « less