- Award ID(s):
- 1758000
- NSF-PAR ID:
- 10359090
- Date Published:
- Journal Name:
- Royal Society Open Science
- Volume:
- 9
- Issue:
- 7
- ISSN:
- 2054-5703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The 2019 ENRICH Voyage (Euphausiids and Nutrient Recycling in Cetacean Hotspots), was conducted from 19 January – 5 March 2019, aboard the RV Investigator. The voyage departed from and returned to Hobart, Tasma-nia, Australia, and conducted most marine science operations in the area between 60°S – 67°S and 138°E – 152°E. As part of the multidisciplinary research programme, a passive acoustic survey for marine mammals was undertaken for the duration of the voyage, with the main goal to monitor for and locate groups of calling Antarctic blue whales (Balaenoptera musculus intermedia). Directional sonobuoys were used at 295 listening stations, which resulted in 828 hours of acoustic recordings. Monitoring also took place for pygmy blue, (B. m. brevicauda), fin, (B. physalus), sperm (Physeter macrocephalus), humpback (Megaptera novaeangliae), sei (B. borealis), and Antarctic minke whales (B. bonarensis); for leopard (Hydrurga leptonyx), crabeater (Lobodon carcinophaga), Ross (Ommatophoca rossii), and Weddell seals (Leptonychotes weddellii), and for odontocete (low frequency whistles) vocalisations during each listening station. Calibrated measurements of the bearing and intensity of the majority of calls from blue and fin whales were obtained in real time. 33,435 calls from Antarctic blue whales were detected at 238 listening stations throughout the voyage, most of them south of 60°S. Southeast Indian Ocean blue whale song was detected primarily between 47° and 55°S while the southwest Pacific blue whale song was recorded between 44° and 48°S. Most baleen whale and seal calls were detected along the continental shelf break in the study region but some were also detected in deeper waters. Marine mammal calls were uncommon on the shelf, which did not have any ice cover during the survey. Calling Antarctic blue whales were tracked and located on multiple occasions to enable closer study of their fine-scale movements and calling behaviour as well as enabling collection of photo ID, behavioural, and photogrammetry data. The passive acoustic data collected during this voyage will allow investigation of the distribution of Antarctic blue whales in relation to environmental correlates measured during ENRICH, with a focus on blue whale prey.more » « less
-
The source levels, SL, of Antarctic blue and fin whale calls were estimated using acoustic recordings collected from directional sonobuoys deployed during an Antarctic voyage in 2019. Antarctic blue whale call types included stereotyped song and downswept frequency-modulated calls, often, respectively, referred to as Z-calls (comprising song units-A, B, and C) and D-calls. Fin whale calls included 20 Hz pulses and 40 Hz downswept calls. Source levels were obtained by measuring received levels (RL) and modelling transmission losses (TL) for each detection. Estimates of SL were sensitive to the parameters used in TL models, particularly the seafloor geoacoustic properties and depth of the calling whale. For our best estimate of TL and whale-depth, mean SL in dB re 1 μPa ± 1 standard deviation ranged between 188–191 ± 6–8 dB for blue whale call types and 189–192 ± 6 dB for fin whale call types. These estimates of SL are the first from the Southern Hemisphere for D-calls and 40 Hz downsweeps, and the largest sample size to-date for Antarctic blue whale song. Knowledge of source levels is essential for estimating the detection range and communication space of these calls and will enable more accurate comparisons of detections of these sounds from sonobuoy surveys and across international long-term monitoring networks.more » « less
-
Ummenhofer, Caroline (Ed.)Changes in gray whale ( Eschrichtius robustus ) phenology and distribution are related to observed and hypothesized prey availability, bottom water temperature, salinity, sea ice persistence, integrated water column and sediment chlorophyll a , and patterns of wind-driven biophysical forcing in the northern Bering and eastern Chukchi seas. This portion of the Pacific Arctic includes four Distributed Biological Observatory (DBO) sampling regions. In the Bering Strait area, passive acoustic data showed marked declines in gray whale calling activity coincident with unprecedented wintertime sea ice loss there in 2017–2019, although some whales were seen there during DBO cruises in those years. In the northern Bering Sea, sightings during DBO cruises show changes in gray whale distribution coincident with a shrinking field of infaunal amphipods, with a significant decrease in prey abundance (r = -0.314, p<0.05) observed in the DBO 2 region over the 2010–2019 period. In the eastern Chukchi Sea, sightings during broad scale aerial surveys show that gray whale distribution is associated with localized areas of high infaunal crustacean abundance. Although infaunal crustacean prey abundance was unchanged in DBO regions 3, 4 and 5, a mid-decade shift in gray whale distribution corresponded to both: (i) a localized increase in infaunal prey abundance in DBO regions 4 and 5, and (ii) a correlation of whale relative abundance with wind patterns that can influence epi-benthic and pelagic prey availability. Specifically, in the northeastern Chukchi Sea, increased sighting rates (whales/km) associated with an ~110 km (60 nm) offshore shift in distribution was positively correlated with large scale and local wind patterns conducive to increased availability of krill. In the southern Chukchi Sea, gray whale distribution clustered in all years near an amphipod-krill ‘hotspot’ associated with a 50-60m deep trough. We discuss potential impacts of observed and inferred prey shifts on gray whale nutrition in the context of an ongoing unusual gray whale mortality event. To conclude, we use the conceptual Arctic Marine Pulses (AMP) model to frame hypotheses that may guide future research on whales in the Pacific Arctic marine ecosystem.more » « less
-
Abstract Microparticles, such as microplastics and microfibers, are ubiquitous in marine food webs. Filter-feeding megafauna may be at extreme risk of exposure to microplastics, but neither the amount nor pathway of microplastic ingestion are well understood. Here, we combine depth-integrated microplastic data from the California Current Ecosystem with high-resolution foraging measurements from 191 tag deployments on blue, fin, and humpback whales to quantify plastic ingestion rates and routes of exposure. We find that baleen whales predominantly feed at depths of 50–250 m, coinciding with the highest measured microplastic concentrations in the pelagic ecosystem. Nearly all (99%) microplastic ingestion is predicted to occur via trophic transfer. We predict that fish-feeding whales are less exposed to microplastic ingestion than krill-feeding whales. Per day, a krill-obligate blue whale may ingest 10 million pieces of microplastic, while a fish-feeding humpback whale likely ingests 200,000 pieces of microplastic. For species struggling to recover from historical whaling alongside other anthropogenic pressures, our findings suggest that the cumulative impacts of multiple stressors require further attention.
-
Abstract Animals glean information about risk from their habitat. The acoustic environment is one such source of information, and is an important, yet understudied ecological axis. Although anthropogenic noise has become recently ubiquitous, risk mitigation behaviors have likely been shaped by natural noise over millennia. Listening animals have been shown to increase vigilance and decrease foraging in both natural and anthropogenic noise. However, direct comparisons could be informative to conservation and understanding evolutionary drivers of behavior in noise. Here, we used 27 song sparrows (Melospiza melodia) and 148 laboratory behavioral trials to assess foraging and vigilance behavior in both anthropogenic and natural noise sources. Using five acoustic environments (playbacks of roadway traffic, a whitewater river, a whitewater river shifted upwards in frequency, a river with the amplitude modulation of roadway traffic, and an ambient control), we attempt to parse out the acoustic characteristics that make a foraging habitat risky. We found that sparrows increased vigilance or decreased foraging in 4 of 6 behaviors when foraging in higher sound levels regardless of the noise source or variation in frequency and amplitude modulation. These responses may help explain previously reported declines in abundance of song sparrows exposed to playback of intense river noise. Our results imply that natural soundscapes have likely shaped behavior long before anthropogenic noise, and that high sound levels negatively affect the foraging-vigilance trade-off in most intense acoustic environments. Given the ever-increasing footprint of noise pollution, these results imply potential negative consequences for bird populations.