skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The influence of fractional surface coverage on the core–core separation in ordered monolayers of thiol-ligated Au nanoparticles
We report the results of grazing incidence X-ray diffraction (GIXD) measurements from water supported Langmuir monolayers of gold nanoparticles ligated with dodecanethiol (12 carbons), tetradecanethiol (14 carbons), hexadecanethiol (16 carbons), and octadecanethiol (18 carbons). These monolayers are formed from solutions with varying concentrations of the respective thiols. We show that equilibrium between adsorbed thiol molecules and the thiols in the bulk solution implies fractional coverage of the Au nanoparticle core. We also show that the nanoparticle–nanoparticle separation and the correlation length of particles in these ordered films increases with thiol concentration in the parent solution, and that excess thiol can be found in the space between particles as well as in islands away from the particles. Using the equilibrium constant relating ligand solution concentration and nanoparticle surface coverage of the gold core by the ligand molecules, we interpret the way in which varying thiol concentration affects the nanoparticle–nanoparticle separation as a function of surface coverage of the gold core by the ligand molecules.  more » « less
Award ID(s):
1834750
PAR ID:
10135099
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
15
Issue:
43
ISSN:
1744-683X
Page Range / eLocation ID:
8800 to 8807
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Digestive ripening (DR) is a synthetic method where a polydisperse colloid of metal nanoparticles upon refluxing with a free ligand in a high boiling point solvent gives monodisperse nanoparticles. Brust synthesis is known to form atomically monodisperse thiolate protected gold nanoparticles also known as gold nanomolecules (Au NMs). Unlike the Brust method which gives smaller (1–3 nm) atomically precise nanomolecules, DR has been used only for the synthesis of large nanoparticles (>5 nm) with good monodispersity. In thiolate protected gold nanoparticle Brust synthesis, the yellow colored phase transferred Au( iii ) solution is converted to a colorless Au( i ) mixture after the addition of thiol by forming Au–SR, which is then reduced to form black colored Au NMs. However, in DR, by using the same primary chemicals, the two steps were reversed: the mixture was reduced before the addition of thiol. Here we show that in DR, adding thiol after 2 minutes of reduction gives larger particles (5 nm) as reported, whereas adding thiol 30 seconds after reduction results in smaller particles (<2 nm). In this work, for the first time, DR yields atomically precise Au 25 (SR) 18 and Au 144 (SR) 60 NMs. This is reported using two aliphatic thiols – hexanethiol and dodecanethiol – as the protecting ligands. DR was also repeated using an aromatic thiol, 4- tert -butyl benzene thiol (TBBT), which yields Au 279 (SR) 84 NMs consistent with the Brust method, thereby establishing that both DR and Brust methods lead to the formation of atomically precise Au NMs, regardless of the order of thiol addition and reduction steps. 
    more » « less
  2. Surface-enhanced Raman scattering (SERS) is a sensitive analytical technique capable of magnifying the vibrational intensity of molecules adsorbed onto the surface of metallic nanostructures. Various solution-based SERS-active metallic nanostructures have been designed to generate substantial SERS signal enhancements. However, most of these SERS substrates rely on the chemical aggregation of metallic nanostructures to create strong signals. While this can induce high SERS intensities through plasmonic coupling, most chemically aggregated assemblies suffer from poor signal reproducibility and reduced long-term stability. To overcome these issues, here we report for the first time the synthesis of gold core–satellite nanoparticles (CSNPs) for robust SERS signal generation. The novel CSNP assemblies consist of a 30 nm spherical gold core linked to 18 nm satellite particles via linear heterobifunctional thiol–amine terminated PEG chains. We explore the effects that the varying chain lengths have on SERS hot-spot generation, signal reproducibility and long-term activity. The chain length was varied by using PEGs with different molecular weights (1000 Da, 2000 Da, and 3500 Da). The CSNPs were characterized via UV-Vis spectrophotometry, transmission electron microscopy (TEM), ζ -potential measurements, and lastly SERS measurements. The versatility of the synthesized SERS-active CSNPs was revealed through characterization of optical stability and SERS enhancement at 0, 1, 3, 5, 7 and 14 days. 
    more » « less
  3. Carboranedithiol isomers adsorbing with opposite orientations of their dipoles on surfaces are self-assembled together to form mixed monolayers where both lateral dipole−dipole and lateral thiol−thiolate (S−H···S) interactions provide enhanced stability over single-component monolayers. We demonstrate the first instance of the ability to map individual isomers in a mixed monolayer using the model system carboranedithiols on Au{111}. The addition of methyl groups to one isomer provides both an enhanced dipole moment and extra apparent height for differentiation via scanning tunneling microscopy (STM). Associated computational investigations rationalize favorable interactions of mixed pairs and the associated stability changes that arise from these interactions. Both STM images and Monte Carlo simulations yield similarly structured mixed monolayers, where approximately 10% of the molecules have reversed dipole moment orientations but no direct chemical attachment to the surface, leading to homogeneous monolayers with no apparent phase separation. Deprotonating the thiols by depositing the molecules under basic conditions eliminates the lateral S−H···S interactions while accentuating the dipole− dipole forces. The molecular system investigated is composed of isomeric molecules with opposite orientations of dipoles and identical surface packing, which enables the mapping of individual molecules within the mixed monolayers and enables analyses of the contributions of the relatively weak lateral interactions to the overall stability of the assemblies. 
    more » « less
  4. Designing a functional surface that selectively adsorbs nanoparticles based on their size and shape is essential for developing an advanced adsorption-based, post-synthesis nanoparticle separation device. We demonstrate selective adsorption of larger nanoparticles from solution onto a polyelectrolyte brush by tuning the salt concentration. Specifically, a positively-charged polyelectrolyte brush is created by converting pyridine groups of poly(2-vinylpyridine) to n-methyl pyridinium groups using methyl iodide. The adsorption kinetics and thermodynamics of polyethylene glycol-grafted, negatively charged gold nanoparticles (diameters of 12 and 20 nm) were monitored as a function of salt concentration. In a salt-free solution, the polyelectrolyte brush adsorbs gold nanoparticles of both sizes. As the salinity increases, the areal number density of adsorbed nanoparticles monotonically decreases and becomes negligible at high salinity. Interestingly, there is an intermediate range of salt concentrations (i.e., 15 – 20 mM of NaCl) where the decrease in nanoparticle adsorption is more pronounced for smaller particles, leading to size-selective adsorption of the larger nanoparticles. As a further demonstration of selectivity, the polyelectrolyte brush is immersed in a binary mixture of 12-nm and 20-nm nanoparticles and found to selectively capture larger particles with ~ 90 % selectivity. In addition, the size distribution of as-synthesized gold nanoparticles, with an average diameter of 12 nm, was reduced by selectively removing larger particles by exposing the solution to polyelectrolyte brush surfaces. This study demonstrates the potential of a polyelectrolyte brush separation device to remove larger nanoparticles by controlling electrostatic interactions between polymer brushes and particles 
    more » « less
  5. We employ photothermally driven self-assembly of colloidal particles to design microscopic structures with programmable size and tunable order. The experimental system is based on a binary mixture of “plasmonic heater” gold nanoparticles and “assembly building block” microparticles. Photothermal heating of the gold nanoparticles under visible light causes a natural convection flow that efficiently assembles the microscale building block particles (diameter 1–10 μm) into a monolayer. We identify the onset of active Brownian motion of colloidal particles under this convective flow by varying the conditions of light intensity, gold nanoparticle concentration, and sample height. We realize a crowded assembly of microparticles around the center of illumination and show that the size of the particle crowd can be programmed using patterned light illumination. In a binary mixture of gold nanoparticles and polystyrene microparticles, we demonstrate the formation of rapid and large-scale crystalline monolayers, covering an area of 0.88 mm2 within 10 min. We find that the structural order of the assembly can be tuned by varying the surface charge of the nanoparticles and the size of the microparticles, giving rise to the formation of different phases–colloidal crystals, crowds, and gels. Using Monte Carlo simulations, we explain how the phases emerge from the interplay between hydrodynamic and electrostatic interactions, as well as the assembly kinetics. Our study demonstrates the promise of self-assembly with programmable shapes and structural order under nonequilibrium conditions using an accessible setup comprising only binary mixtures and LED light. 
    more » « less