Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations—a plan view plus heights—and a 180∘field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations.
- Award ID(s):
- 1847138
- Publication Date:
- NSF-PAR ID:
- 10135985
- Journal Name:
- 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
- Page Range or eLocation-ID:
- 1473 to 1474
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum.
-
Abstract—Millimeter-wave (mmWave) and Terahertz (THz) will be used in the sixth-generation (6G) wireless systems, especially for indoor scenarios. This paper presents an indoor three-dimensional (3-D) statistical channel model for mmWave and sub-THz frequencies, which is developed from extensive channel propagation measurements conducted in an office building at 28 GHz and 140 GHz in 2014 and 2019. Over 15,000 power delay profiles (PDPs) were recorded to study channel statistics such as the number of time clusters, cluster delays, and cluster powers. All the parameters required in the channel generation procedure are derived from empirical measurement data for 28 GHz and 140 GHz line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The channel model is validated by showing that the simulated root mean square (RMS) delay spread and RMS angular spread yield good agreements with measured values. An indoor channel simulation software is built upon the popular NYUSIM outdoor channel simulator, which can generate realistic channel impulse response, PDP, and power angular spectrum. Index Terms—Millimeter-Wave; Terahertz; Indoor Office; Channel Measurement; Channel Modeling; Channel Simulation; 5G; 6G
-
We present an experimental and theoretical comparison of two different scattering-type scanning near-field optical microscopy (s-SNOM) based techniques in the terahertz regime; nanoscale reflection-type terahertz time-domain spectroscopy (THz nanoscopy) and nanoscale laser terahertz emission microscopy, or laser terahertz emission nanoscopy (LTEN). We show that complementary information regarding a material’s charge carriers can be gained from these techniques when employed back-to-back. For the specific case of THz nanoscopy and LTEN imaging performed on a lightly p-doped InAs sample, we were able to record waveforms with detector signal components demodulated up to the 6thand the 10thharmonic of the tip oscillation frequency, and measure a THz near-field confinement down to 11 nm. A computational approach for determining the spatial confinement of the enhanced electric field in the near-field region of the conductive probe is presented, which manifests an effective “tip sharpening” in the case of nanoscale LTEN due to the alternative geometry and optical nonlinearity of the THz generation mechanism. Finally, we demonstrate the utility of the finite dipole model (FDM) in predicting the broadband scattered THz electric field, and present the first use of this model for predicting a near-field response from LTEN.
-
•Terahertz(THz) radiation is nonionizing is therefore harmless to live organisms, as opposed to higher energy radiation, such as x-rays and UV rays. THz low scattering characteristic, as compared to optical rays, and strong absorption by water makes THz useful for imaging organic tissue. • In a Lumpectomy procedure, a tumor is removed from a predetermined area. In most cases, a surgeon will often remove a larger amount of tissue to ensure that all of the cancer is removed however this can extend the patient's recovery period and it does not guarantee that all the cancerous tissue was removed.. • Using the THz Jets Transmission (Tx) Imaging method the goal will be to allow a surgeon to better assess the margins of the excised tissue using higher THz resolution images. • This method is done by transmitting a THz signal through a Teflon sphere, then through the sample, and finally to the receiver on the other side. • Teflon spheres have the ability to filter out the lower terahertz frequencies which then have the potential to produce high-resolution images.