skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Single-shot ultrafast visualization and measurement of laser–matter interactions in flexible glass using frequency domain holography
We perform single-shot frequency domain holography to measure the ultrafast spatio-temporal phase change induced by the optical Kerr effect and plasma in flexible Corning Willow Glass during femtosecond laser–matter interactions. We measure the nonlinear index of refraction ( n 2 ) to be ( 3.6 ±<#comment/> 0.1 ) ×<#comment/> 10 −<#comment/> 16 c m 2 / W and visualize the plasma formation and recombination on femtosecond time scales in a single shot. To compare with the experiment, we carry out numerical simulations by solving the nonlinear envelope equation.  more » « less
Award ID(s):
1707237
PAR ID:
10136366
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
5
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 1252
Size(s):
Article No. 1252
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on spectroscopic measurements on the 4 f 7 6 s 2 8 S 7 / 2 ∘<#comment/> →<#comment/> 4 f 7 ( 8 S ∘<#comment/> ) 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 transition in neutral europium-151 and europium-153 at 459.4 nm. The center of gravity frequencies for the 151 and 153 isotopes, reported for the first time in this paper, to our knowledge, were found to be 652,389,757.16(34) MHz and 652,386,593.2(5) MHz, respectively. The hyperfine coefficients for the 6 s 6 p ( 1 P ∘<#comment/> ) 8 P 9 / 2 state were found to be A ( 151 ) = −<#comment/> 228.84 ( 2 ) M H z , B ( 151 ) = 226.9 ( 5 ) M H z and A ( 153 ) = −<#comment/> 101.87 ( 6 ) M H z , B ( 153 ) = 575.4 ( 1.5 ) M H z , which all agree with previously published results except for A(153), which shows a small discrepancy. The isotope shift is found to be 3163.8(6) MHz, which also has a discrepancy with previously published results. 
    more » « less
  2. The mid-IR spectroscopic properties of E r 3 + doped low-phonon C s C d C l 3 and C s P b C l 3 crystals grown by the Bridgman technique have been investigated. Using optical excitations at ∼<#comment/> 800 n m and ∼<#comment/> 660 n m , both crystals exhibited IR emissions at ∼<#comment/> 1.55 , ∼<#comment/> 2.75 , ∼<#comment/> 3.5 , and ∼<#comment/> 4.5 µ<#comment/> m at room temperature. The mid-IR emission at 4.5 µm, originating from the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition, showed a long emission lifetime of ∼<#comment/> 11.6 m s for E r 3 + doped C s C d C l 3 , whereas E r 3 + doped C s P b C l 3 exhibited a shorter lifetime of ∼<#comment/> 1.8 m s . The measured emission lifetimes of the 4 I 9 / 2 state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the 4 I 9 / 2 →<#comment/> 4 I 11 / 2 transition in E r 3 + doped C s C d C l 3 and C s P b C l 3 were determined to be ∼<#comment/> 0.14 ×<#comment/> 10 −<#comment/> 20 c m 2 and ∼<#comment/> 0.41 ×<#comment/> 10 −<#comment/> 20 c m 2 , respectively. The results of Judd–Ofelt analysis are presented and discussed. 
    more » « less
  3. We demonstrate the DC-Kerr effect in plasma enhanced chemical vapor deposition (PECVD) silicon-rich nitride (SRN) and use it to demonstrate a third order nonlinear susceptibility, χ<#comment/> ( 3 ) , as high as ( 6 ±<#comment/> 0.58 ) ×<#comment/> 10 −<#comment/> 19 m 2 / V 2 . We employ spectral shift versus applied voltage measurements in a racetrack resonator as a tool to characterize the nonlinear susceptibilities of these films. In doing so, we demonstrate a χ<#comment/> ( 3 ) larger than that of silicon and argue that PECVD SRN can provide a versatile platform for employing optical phase shifters while maintaining a low thermal budget using a deposition technique readily available in CMOS process flows. 
    more » « less
  4. In this Letter, the electron-blocking-layer (EBL)-free AlGaN ultraviolet (UV) light-emitting diodes (LEDs) using a strip-in-a-barrier structure have been proposed. The quantum barrier (QB) structures are systematically engineered by integrating a 1 nm intrinsic A l x G a ( 1 −<#comment/> x ) N strip into the middle of QBs. The resulted structures exhibit significantly reduced electron leakage and improved hole injection into the active region, thus generating higher carrier radiative recombination. Our study shows that the proposed structure improves radiative recombination by ∼<#comment/> 220 %<#comment/> , reduces electron leakage by ∼<#comment/> 11 times, and enhances optical power by ∼<#comment/> 225 %<#comment/> at 60 mA current injection compared to a conventional AlGaN EBL LED structure. Moreover, the EBL-free strip-in-a-barrier UV LED records the maximum internal quantum efficiency (IQE) of ∼<#comment/> 61.5 %<#comment/> which is ∼<#comment/> 72 %<#comment/> higher, and IQE droop is ∼<#comment/> 12.4 %<#comment/> , which is ∼<#comment/> 333 %<#comment/> less compared to the conventional AlGaN EBL LED structure at ∼<#comment/> 284.5 n m wavelength. Hence, the proposed EBL-free AlGaN LED is the potential solution to enhance the optical power and produce highly efficient UV emitters. 
    more » « less
  5. We demonstrate a Bell state analyzer that operates directly on frequency mismatch. Based on electro-optic modulators and Fourier-transform pulse shapers, our quantum frequency processor design implements interleaved Hadamard gates in discrete frequency modes. Experimental tests on entangled-photon inputs reveal fidelities of ∼<#comment/> 98 %<#comment/> for discriminating between the | Ψ<#comment/> + ⟩<#comment/> and | Ψ<#comment/> −<#comment/> ⟩<#comment/> frequency-bin Bell states. Our approach resolves the tension between wavelength-multiplexed state transport and high-fidelity Bell state measurements, which typically require spectral indistinguishability. 
    more » « less