Abstract The carbon and water cycles in the Earth's interior are linked to key planetary processes, such as mantle melting, degassing, chemical differentiation, and advection. However, the role of water in the carbon exchange between the mantle and core is not well known. Here, we show experimental results of a reaction between Fe3C and H2O at pressures and temperatures of the deep mantle and core‐mantle boundary (CMB). The reaction produces diamond, FeO, and FeHx, suggesting that water can liberate carbon from the core in the form of diamond (“core carbon extraction”) while the core gains hydrogen, if subducted water reaches to the CMB. Therefore, Earth's deep water and carbon cycles can be linked. The extracted core carbon can explain a significant amount of the present‐day mantle carbon. Also, if diamond can be collected by mantle flow in the region, it can result in unusually high seismic‐velocity structures.
more »
« less
Deep Earth carbon reactions through time and space
Abstract Reactions involving carbon in the deep Earth have limited manifestations on Earth's surface, yet they have played a critical role in the evolution of our planet. The metal-silicate partitioning reaction promoted carbon capture during Earth's accretion and may have sequestered substantial carbon in Earth's core. The freezing reaction involving iron-carbon liquid could have contributed to the growth of Earth's inner core and the geodynamo. The redox melting/freezing reaction largely controls the movement of carbon in the modern mantle, and reactions between carbonates and silicates in the deep mantle also promote carbon mobility. The 10-year activity of the Deep Carbon Observatory has made important contributions to our knowledge of how these reactions are involved in the cycling of carbon throughout our planet, both past and present, and has helped to identify gaps in our understanding that motivate and give direction to future studies.
more »
« less
- Award ID(s):
- 1751664
- PAR ID:
- 10136606
- Date Published:
- Journal Name:
- American Mineralogist
- Volume:
- 105
- Issue:
- 1
- ISSN:
- 0003-004X
- Page Range / eLocation ID:
- 22 to 27
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The geologic carbon cycle plays a fundamental role in controlling Earth's climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth's past and future habitability. Here, we summarize their significance as part of the Deep Carbon Obsevatory's “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth's surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth's history. Rocks may also undergo carbonation reactions at high temperatures in the ultramafic mantle wedge of a subduction zone or during retrograde regional metamorphism. In the reverse direction, the reaction above represents various prograde metamorphic decarbonation processes that can occur in continental collisions, rift zones, subduction zones, and in aureoles around magmatic systems. We summarize the fluxes and uncertainties of major carbonation/decarbonation reactions and review the key feedback mechanisms that are likely to have stabilized atmospheric CO2 levels. Future work on planetary habitability and Earth's past and future climate will rely on an enhanced understanding of the long-term carbon cycle.more » « less
-
Abstract As the reaction product of subducted water and the iron core, FeO2 with more oxygen than hematite (Fe2O3) has been recently recognized as an important component in the D” layer just above the Earth's core-mantle boundary. Here, we report a new oxygen-excess phase (Mg, Fe)2O3+δ (0 < δ < 1, denoted as “OE-phase”). It forms at pressures greater than 40gigapascals when (Mg, Fe)-bearing hydrous materials are heated over 1,500 kelvin. The OE-phase is fully recoverable to ambient conditions for ex-situ investigation using transmission electron microscopy, which indicates that the OE-phase contains ferric iron (Fe3+) as in Fe2O3 but holds excess oxygen through interactions between oxygen atoms. The new OE-phase provides strong evidence that H2O has extraordinary oxidation power at high pressure. Unlike the formation of pyrite-type FeO2Hx which usually requires saturated water, the OE-phase can be formed with under-saturated water at mid-mantle conditions, and is expected to be more ubiquitous at depths greater than 1,000 km in Earth's mantle. The emergence of oxygen-excess reservoirs out of primordial and subducted (Mg, Fe)-bearing hydrous materials may revise our view on the deep-mantle redox chemistry.more » « less
-
Deep carbon cycle is crucial for mantle dynamics and maintaining Earth’s habitability. Recycled carbonates are a strong oxidant in mantle carbon-iron redox reactions, leading to the formation of highly oxidized mantle domains and deep carbon storage. Here we report high Fe3+/∑Fe values in Cenozoic intraplate basalts from eastern China, which are correlated with geochemical and isotopic compositions that point to a common role of carbonated melt with recycled carbonate signatures. We propose that the source of these highly oxidized basalts has been oxidized by carbonated melts derived from the stagnant subducted slab in the mantle transition zone. Diamonds formed during the carbon-iron redox reaction were separated from the melt due to density differences. This would leave a large amount of carbon (about four times of preindustrial atmospheric carbon budget) stored in the deep mantle and isolated from global carbon cycle. As such, the amounts of subducted slabs stagnated at mantle transition zone can be an important factor regulating the climate.more » « less
-
Abstract Earth's accretion was highly energetic and likely involved multiple global melting events. Following the Moon‐forming giant impact, extensive mantle melting and the separation of solids and melts under deep mantle pressures likely produced a basal magma ocean (BMO) beneath the solidified mantle. The presence and evolution of the BMO have been proposed to explain key geophysical and geochemical features of the lowermost mantle. Understanding the evolution of the BMO is crucial for testing these hypotheses, but its interaction with the core presents a significant challenge, as the mechanism of this exchange remains unclear. In this study, we develop a theoretical framework to assess the regime of BMO‐core exchange based on the compositions of the BMO and the core. We propose that during solidification, the BMO may evolve into a regime where the reaction at the BMO‐core interface drives compositional convection in liquids on both sides, if the core has a high enough Si content (–, under the assumption that the O content is –). In this scenario, the BMO‐core exchange would be much more efficient than previously estimated, buffering the tendency of FeO enrichment during crystallization and shortening the lifetime of the BMO.more » « less
An official website of the United States government

