Abstract Reactions involving carbon in the deep Earth have limited manifestations on Earth's surface, yet they have played a critical role in the evolution of our planet. The metal-silicate partitioning reaction promoted carbon capture during Earth's accretion and may have sequestered substantial carbon in Earth's core. The freezing reaction involving iron-carbon liquid could have contributed to the growth of Earth's inner core and the geodynamo. The redox melting/freezing reaction largely controls the movement of carbon in the modern mantle, and reactions between carbonates and silicates in the deep mantle also promote carbon mobility. The 10-year activity of the Deep Carbon Observatory has made important contributions to our knowledge of how these reactions are involved in the cycling of carbon throughout our planet, both past and present, and has helped to identify gaps in our understanding that motivate and give direction to future studies.
more »
« less
Water‐Induced Diamond Formation at Earth's Core‐Mantle Boundary
Abstract The carbon and water cycles in the Earth's interior are linked to key planetary processes, such as mantle melting, degassing, chemical differentiation, and advection. However, the role of water in the carbon exchange between the mantle and core is not well known. Here, we show experimental results of a reaction between Fe3C and H2O at pressures and temperatures of the deep mantle and core‐mantle boundary (CMB). The reaction produces diamond, FeO, and FeHx, suggesting that water can liberate carbon from the core in the form of diamond (“core carbon extraction”) while the core gains hydrogen, if subducted water reaches to the CMB. Therefore, Earth's deep water and carbon cycles can be linked. The extracted core carbon can explain a significant amount of the present‐day mantle carbon. Also, if diamond can be collected by mantle flow in the region, it can result in unusually high seismic‐velocity structures.
more »
« less
- PAR ID:
- 10371917
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 49
- Issue:
- 16
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many regions of the Earth's mantle are seismically anisotropic, including portions of the lowermost mantle, which may indicate deformation due to convective flow. The splitting of ScS phases, which reflect once off the core-mantle boundary (CMB), is commonly measured to identify lowermost mantle anisotropy, although some challenges exist. Here, we use global wavefield simulations to evaluate commonly used approaches to inferring a lowermost mantle contribution to ScS splitting. We show that due to effects of the CMB reflection, only the epicentral distance range between 60° and 70° is appropriate for ScS splitting measurements. For this distance range, splitting is diagnostic of deep mantle anisotropy if no upper mantle anisotropy is present; however, if ScS is also split due to upper mantle anisotropy, the reliable diagnosis of deep mantle anisotropy is challenging. Moreover, even in the case of a homogeneously anisotropic deep mantle region sampled from a single azimuth by multiple ScS waves with different source polarizations (in absence of upper mantle anisotropy), different apparent fast directions are produced. We suggest that ScS splitting should only be measured at null stations and conduct such an analysis worldwide. Our results indicate that seismic anisotropy is globally widespread in the deep mantle.more » « less
-
Abstract Hadean zircons provide a potential record of Earth's earliest subduction 4.3 billion years ago. It remains enigmatic how subduction could be initiated so soon after the presumably Moon‐forming giant impact (MGI). Earlier studies found an increase in Earth's core‐mantle boundary (CMB) temperature due to the accumulation of the impactor's core, and our recent work shows Earth's lower mantle remains largely solid, with some of the impactor's mantle potentially surviving as the large low‐shear velocity provinces (LLSVPs). Here, we show that a hot post‐impact CMB drives the initiation of strong mantle plumes that can induce subduction initiation ∼200 Myr after the MGI. 2D and 3D thermomechanical computations show that a high CMB temperature is the primary factor triggering early subduction, with enrichment of heat‐producing elements in LLSVPs as another potential factor. The models link the earliest subduction to the MGI with implications for understanding the diverse tectonic regimes of rocky planets.more » « less
-
unknown (Ed.)The Earth’s core–mantle boundary presents a dramatic change in materials, from silicate to metal. While little is known about chemical interactions between them, a thin layer with a lower velocity has been proposed at the topmost outer core (Eʹ layer) that is difficult to explain with a change in concentration of a single light element. Here we perform high-temperature and -pressure laser-heated diamond-anvil cell experiments and report the formation of SiO2 and FeHx from a reaction between water from hydrous minerals and Fe–Si alloys at the pressure–temperature conditions relevant to the Earth’s core–mantle boundary. We suggest that, if water has been delivered to the core–mantle boundary by subduction, this reaction could enable exchange of hydrogen and silicon between the mantle and the core. The resulting H-rich, Si-deficient layer formed at the topmost core would have a lower density, stabilizing chemical stratification at the top of the core, and a lower velocity. We suggest that such chemical exchange between the core and mantle over gigayears of deep transport of water may have contributed to the formation of the putative Eʹ layer.more » « less
-
Abstract The water content in Earth's mantle today remains poorly constrained, but the bulk water storage capacity in the solid mantle can be quantified based on experimental data and may amount to a few times the modern surface ocean mass (OM). An appreciation of the mantle water storage capacity is indispensable to our understanding of how water may have cycled between the surface and mantle reservoirs and changed the volume of the oceans through time. In this study, we parameterized high pressure‐temperature experimental data on water storage capacities in major rock‐forming minerals to track the bulk water storage capacity in Earth's solid mantle as a function of temperature. We find that the mantle water storage capacity decreases as mantle potential temperature (Tp) increases, and its estimated value depends on the water storage capacity of bridgmanite in the lower mantle: 1.86–4.41 OM with a median of 2.29 OM for today (Tp = 1600 K), and 0.52–1.69 OM with a median of 0.72 OM for the early Earth's solid mantle (for aTpthat was 300 K higher). An increase inTpby 200–300 K results in a decrease in the mantle water storage capacity by – OM. We explored how the volume of early oceans may have controlled sea level during the early Archean (4–3.2 Ga) with some additional assumptions about early continents. We found that more voluminous surface oceans might have existed if the actual mantle water content today is > 0.3–0.8 OM and the early ArcheanTpwas ≥1900 K.more » « less
An official website of the United States government
