- NSF-PAR ID:
- 10136854
- Date Published:
- Journal Name:
- IEEE International Conference on Computational Photography
- Page Range / eLocation ID:
- 1 to 11
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We investigate the propagation losses in terahertz (THz) non-line-of-sight (NLoS) imaging and compare the performance to the optical counterpart. NLoS imaging exploits the multiple reflections of electromagnetic waves from surrounding surfaces to reconstruct the geometry and location of hidden objects. THz and visible/infrared radiations are attractive for NLoS imaging due to the short wavelengths and practical apertures that can support this non-conventional imaging. However, the scattering mechanisms vary significantly and determine the quality of the reconstructed images. This work compares for the first time the free-space path loss and rough surface scattering losses of a simple THz and optical NLoS imaging topology. Because specular reflections are dominant in THz scattering while optical systems suffer from strong diffuse scattering, THz NLoS imaging systems can receive considerably stronger backscattered signals.more » « less
-
The efficiencies of photovoltaic (PV) and thermoelectric (TE) have been limited by the intrinsic properties to ~ 25 % and ~ 10 %, respectively. In current applications, photovoltaics utilizes the shorter wavelength end of the solar spectrum but suffer decreases in efficiency from heating caused by IR absorption. The novel tunable nanostructures of new hybrids eliminate this problem by directing thermal energy from longer wavelengths to the thermoelectric device. Solar light is harvested through transparent hybrid and segregated into different wavelengths: the IR is absorbed by the hybrid which is photothermally heated up to ~100 °C for the required thermoelectric temperature span; the UV/visible is directed to PV with reduced IR components, therefore significantly reducing heating. In this way, both PV and TE operate jointly by separately utilizing the full spectrum of solar light. The novel hybrid functions not only as a photothermal heater for TE but also a wavelength segregator enabling the PV and TE devices to synergistically produce electrical energy with much greater system efficiency. Also identified is the operating structural mechanism on spectral tunability and photothermal effect of the photonic hybrids.more » « less
-
Abstract Visual systems have evolved to discriminate between different wavelengths of light. The ability to perceive color, or specific light wavelengths, is important as color conveys crucial information about both biotic and abiotic features in the environment. Indeed, different wavelengths of light can drive distinct patterns of activity in the vertebrate brain, yet what remains incompletely understood is whether distinct wavelengths can invoke etiologically relevant behavioral changes. To address how specific wavelengths in the visible spectrum modulate behavioral performance, we use larval zebrafish and a stereotypic light-search behavior. Prior work has shown that the cessation of light triggers a transitional light-search behavior, which we use to interrogate wavelength-dependent behavioral modulation. Using 8 narrow spectrum light sources in the visible range, we demonstrate that all wavelengths induce motor parameters consistent with search behavior, yet the magnitude of search behavior is spectrum sensitive and the underlying motor parameters are modulated in distinct patterns across short, medium, and long wavelengths. However, our data also establishes that not all motor features of search are impacted by wavelength. To define how wavelength modulates search performance, we performed additional assays with alternative wavelengths, dual wavelengths, and variable intensity. Last, we also tested blind larvae to resolve which components of wavelength dependent behavioral changes potentially include signaling from non-retinal photoreception. These findings have important implications as organisms can be exposed to varying wavelengths in laboratory and natural settings and therefore impose unique behavioral outputs.
-
Abstract Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations—a plan view plus heights—and a 180∘field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations.
-
Efficient on-chip entangled photon pair generation at telecom wavelengths is an integral aspect of emerging quantum optical technologies, particularly for quantum communication and computing. However, moving to shorter wavelengths enables the use of more accessible silicon detector technology, and opens up applications in imaging and spectroscopy. Here, we present high brightness ((1.6 ± 0.3) × 109pairs/s/mW/nm) visible–near-IR photon pair generation in a periodically poled lithium niobate nanophotonic waveguide. The degenerate spectrum of the photon pairs is centered at 811 nm with a bandwidth of 117 nm when pumped with a spectrally multimode laser diode. The measured on-chip source efficiency of (2.3 ± 0.5) × 1011pairs/s/mW is on par with source efficiencies at telecom wavelengths and is also orders of magnitude higher than the efficiencies of other visible sources implemented in bulk crystal or diffused waveguide-based technologies. Further improvements in the brightness and efficiencies are possible by pumping the device with a single-frequency laser, which would also shrink the pair bandwidth. These results represent the shortest wavelength of photon pairs generated in a nanophotonic waveguide reported to date by nearly an octave.