- Award ID(s):
- 1953009
- NSF-PAR ID:
- 10503533
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Solar Energy
- Volume:
- 258
- Issue:
- C
- ISSN:
- 0038-092X
- Page Range / eLocation ID:
- 220 to 231
- Subject(s) / Keyword(s):
- spectral selective, solar harvesting, photothermal, thermoelectric, photovoltaic, energy generation, hybrids
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
A Photothermal Solar Tunnel Radiator (PSTR) is designed and developed by employing multiple transparent photothermal glass panels (TPGP). The primary objective is to pioneer a transformative approach to achieve energy-neutral building heating utilities, exemplified by a lab-scale "Photothermal Solar Box" (PSB) exclusively heated with TPGP under natural sunlight. The PSTR presents a novel paradigm for sustainable energy, enabling direct solar energy capture through transparent glass substrates with photothermal coatings. The high transparency of Fe3O4@Cu2-xS coated glass substrates enhance efficient solar harvesting and photothermal energy generation within the Photothermal Solar Box. The system demonstrates an impressive thermal energy output, reaching up to 9.1x105 joules with 8 photothermal panels in parallel. Even under colder conditions (ambient temperature: -10 °C), with accelerated heat loss, the interior temperatures of the PSB with partial thermal insulation achieve a commendable 35 °C, showcasing effective photothermal heating in cold weather. These findings indicate the system's resilience and efficiency in harnessing solar energy under diverse conditions, including partial cloudy weather. The initiative contributes to broader sustainability goals by providing a scalable and practical alternative to traditional solar heating methods, aligning with the global mission for a cleaner, greener future.more » « less
-
Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials.more » « less
-
Abstract Sunlight is one of the Earth's clean and sustainable natural energy resources, and extensive studies are conducted on the conversion of solar energy into electricity using photovoltaic (PV) devices. However, single‐junction PV devices cannot break the theoretical efficiency limit known as the Shockley–Queisser limit that is caused by the sub‐bandgap transmission and heat dissipation losses in semiconductors. Solar thermal conversion approaches may provide an alternative way to exceed this limit and enable more efficient use of solar light than that in PV devices. Recently, spectrally or thermally engineered metamaterials have attracted considerable attention for solar energy applications because of their excellent physical properties. The recent research progress in the development of these photothermal and thermoplasmonic metamaterials, along with their promising applications in solar thermophotovoltaics, radiative cooling, and solar desalination, is discussed.
-
Abstract Agrivoltaics (AV), conceived in the early 1980s, promise to ameliorate competition between solar energy generation and crop production for arable land. The premise behind AV is that excess light not used in photosynthesis can be used for energy production. There are opportunities for maximizing photosynthesis by targeting particular wavelengths (e.g., red) to be transmitted through semi‐transparent photovoltaic (PV) cells depending on crop type and environmental conditions. Camporese and Abou Najm (2022,
https://doi.org/10.1029/2022EF002900 ) developed a numerical model that accommodates the various wavelengths of the incoming light spectrum to predict photosynthesis, stomatal conductance, and transpiration. This commentary seeks to place those and other recent findings about the modifications to the plant micro‐environment by PV cells in the context of maximum attainable aboveground biomass. -
Plasmonic photocatalysis is an emerging research field that holds promise for sustainable energy applications, particularly in solar energy conversion. In this study, we focus on the enhancement of broadband light absorption capabilities for plasmonic photocatalyst under white light illumination. By replacing parts of the catalyst with solar absorber, we can significantly improve the total reaction rate under mild heating conditions with less catalyst. Through careful comparison of reaction conditions and systematic optimization of the contributions from photothermal and non-thermal effects, we demonstrate a substantial enhancement in broadband light absorption capacity and overall light effectiveness, paving the way for advanced plasmonic photocatalysts with greater efficiency and practical applicability using solar light as the energy source.more » « less