skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Synergistic photothermal-thermoelectric-photovoltaic energy generation via a transparent spectral modulating solar module
The efficiencies of photovoltaic (PV) and thermoelectric (TE) have been limited by the intrinsic properties to ~ 25 % and ~ 10 %, respectively. In current applications, photovoltaics utilizes the shorter wavelength end of the solar spectrum but suffer decreases in efficiency from heating caused by IR absorption. The novel tunable nanostructures of new hybrids eliminate this problem by directing thermal energy from longer wavelengths to the thermoelectric device. Solar light is harvested through transparent hybrid and segregated into different wavelengths: the IR is absorbed by the hybrid which is photothermally heated up to ~100 °C for the required thermoelectric temperature span; the UV/visible is directed to PV with reduced IR components, therefore significantly reducing heating. In this way, both PV and TE operate jointly by separately utilizing the full spectrum of solar light. The novel hybrid functions not only as a photothermal heater for TE but also a wavelength segregator enabling the PV and TE devices to synergistically produce electrical energy with much greater system efficiency. Also identified is the operating structural mechanism on spectral tunability and photothermal effect of the photonic hybrids.  more » « less
Award ID(s):
1953009
PAR ID:
10503533
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Solar Energy
Volume:
258
Issue:
C
ISSN:
0038-092X
Page Range / eLocation ID:
220 to 231
Subject(s) / Keyword(s):
spectral selective, solar harvesting, photothermal, thermoelectric, photovoltaic, energy generation, hybrids
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The research presented in this study aims to tackle a pivotal challenge in solar energy technologies: how to sustain energy production when direct sunlight is not readily available. By introducing a novel photothermal radiator that effectively harnesses diffused light through plasmonic Fe₃O₄@Cu2-xS nanoparticles, we seek to offer a sustainable solution for maintaining comfortable indoor temperatures without heavy reliance on traditional solar sources. Our approach involves the use of UV and IR lights to photothermally activate transparent Fe₃O₄@Cu2-xS thin films, showcasing a proactive strategy to optimize energy capture even in low-light scenarios such as cloudy days or nighttime hours. This innovative technology carries immense potential for energy-neutral buildings, paving the way to reduce dependence on external energy grids and promoting a more sustainable future for indoor heating and comfort control. The developed photothermal radiator incorporates multiple transparent thin films infused with plasmonic Fe₃O₄@Cu2-xS nanoparticles, known for their robust UV and IR absorptions driven by Localized Surface Plasmon Resonance (LSPR). Through the application of UV and IR lights, these thin films efficiently convert incident photons into thermal energy. Our experiments within a specially constructed Diffused Light Photothermal Box (DLPB), designed to simulate indoor environments, demonstrate the system's capability to raise temperatures above 50°C effectively. This pioneering photothermal radiator offers a promising pathway for sustainable heat generation in indoor spaces, harnessing ubiquitous diffused light sources to enhance energy efficiency. 
    more » « less
  2. Abstract Incorporation of metallic nanoparticles (NPs) in polymer matrix has been used to enhance and control dissolution and release of drugs, for targeted drug delivery, as antimicrobial agents, localized heat sources, and for unique optoelectronic applications. Gold NPs in particular exhibit a plasmonic response that has been utilized for photothermal energy conversion. Because plasmonic nanoparticles typically exhibit a plasmon resonance frequency similar to the visible light spectrum, they present as good candidates for direct photothermal conversion with enhanced solar thermal efficiency in these wavelengths. In our work, we have incorporated ∼3-nm-diameter colloidal gold (Au c ) NPs into electrospun polyethylene glycol (PEG) fibers to utilize the nanoparticle plasmonic response for localized heating and melting of the polymer to release medical treatment. Au c and Au c in PEG (PEG+Au c ) both exhibited a minimum reflectivity at 522 nm or approximately green wavelengths of light under ultraviolet-visible (UV-Vis) spectroscopy. PEG+Au c ES fibers revealed a blue shift in minimum reflectivity at 504 nm. UV-Vis spectra were used to calculate the theoretical efficiency enhancement of PEG+Au c versus PEG alone, finding an approximate increase of 10 % under broad spectrum white light interrogation, and ∼14 % when illuminated with green light. Au c enhanced polymers were ES directly onto resistance temperature detectors and interrogated with green laser light so that temperature change could be recorded. Results showed a maximum increase of 8.9 °C. To further understand how gold nanomaterials effect the complex optical properties of our materials, spectroscopic ellipsometry was used. Using spectroscopic ellipsometry and modeling with CompleteEASE® software, the complex optical constants of our materials were determined. The complex optical constant n (index of refraction) provided us with optical density properties related to light wavelength divided by velocity, and k (extinction coefficient) was used to show the absorptive properties of the materials. 
    more » « less
  3. A Photothermal Solar Tunnel Radiator (PSTR) is designed and developed by employing multiple transparent photothermal glass panels (TPGP). The primary objective is to pioneer a transformative approach to achieve energy-neutral building heating utilities, exemplified by a lab-scale "Photothermal Solar Box" (PSB) exclusively heated with TPGP under natural sunlight. The PSTR presents a novel paradigm for sustainable energy, enabling direct solar energy capture through transparent glass substrates with photothermal coatings. The high transparency of Fe3O4@Cu2-xS coated glass substrates enhance efficient solar harvesting and photothermal energy generation within the Photothermal Solar Box. The system demonstrates an impressive thermal energy output, reaching up to 9.1x105 joules with 8 photothermal panels in parallel. Even under colder conditions (ambient temperature: -10 °C), with accelerated heat loss, the interior temperatures of the PSB with partial thermal insulation achieve a commendable 35 °C, showcasing effective photothermal heating in cold weather. These findings indicate the system's resilience and efficiency in harnessing solar energy under diverse conditions, including partial cloudy weather. The initiative contributes to broader sustainability goals by providing a scalable and practical alternative to traditional solar heating methods, aligning with the global mission for a cleaner, greener future. 
    more » « less
  4. Abstract Agrivoltaics (AV), conceived in the early 1980s, promise to ameliorate competition between solar energy generation and crop production for arable land. The premise behind AV is that excess light not used in photosynthesis can be used for energy production. There are opportunities for maximizing photosynthesis by targeting particular wavelengths (e.g., red) to be transmitted through semi‐transparent photovoltaic (PV) cells depending on crop type and environmental conditions. Camporese and Abou Najm (2022,https://doi.org/10.1029/2022EF002900) developed a numerical model that accommodates the various wavelengths of the incoming light spectrum to predict photosynthesis, stomatal conductance, and transpiration. This commentary seeks to place those and other recent findings about the modifications to the plant micro‐environment by PV cells in the context of maximum attainable aboveground biomass. 
    more » « less
  5. Plasmonic photocatalysis is an emerging research field that holds promise for sustainable energy applications, particularly in solar energy conversion. In this study, we focus on the enhancement of broadband light absorption capabilities for plasmonic photocatalyst under white light illumination. By replacing parts of the catalyst with solar absorber, we can significantly improve the total reaction rate under mild heating conditions with less catalyst. Through careful comparison of reaction conditions and systematic optimization of the contributions from photothermal and non-thermal effects, we demonstrate a substantial enhancement in broadband light absorption capacity and overall light effectiveness, paving the way for advanced plasmonic photocatalysts with greater efficiency and practical applicability using solar light as the energy source. 
    more » « less