The wide-scale production of nanomaterials would benefit from scalable synthetic methods. One class of promising nanomaterials consists of a core@shell structure in which one type of material is used for the core and a second material is grown on the surface to produce a shell. Although these materials are commonly realized in batch, core@shell structures have not yet been widely translated to scalable manufacturing processes. In this work, we investigate the continuous flow synthesis of Au@Ag core@shell nanomaterials using sequential jet-mixing reactors (JMRs). Connecting the two JMRs overcomes challenges with particle instability when the processes are separated. Using synthesis conditions typical for batch methods in the JMR resulted in a non-uniform particle size distribution. Through investigating the synthesis conditions of the Au core, the key parameters affecting the synthesis of well-defined nanoparticles are identified as the concentration of the reducing agent and the inclusion of bovine-serum albumin (BSA) to limit particle aggregation. The concentration of the reducing agent is adjusted to achieve a high yield of Au NPs. The adjusted concentration enabled continuous synthesis of Au@Ag core@shell nanoparticles using BSA as the stabilizing ligand in a dual jet mixing reactor system. Overall, this work provides insights on integrating sequential processes for the synthesis of core@shell nanomaterials.
more »
« less
Jet-mixing reactor for the production of monodisperse silver nanoparticles using a reduced amount of capping agent
Commonly used batch reactors for nanomaterial synthesis can be difficult to scale since rapid particle nucleation and growth require efficient mixing to produce monodisperse particle size distributions (PSD). Monodisperse particles can be synthesized through efficiently mixing the reactants in the liquid phase using a jet-mixing reactor. Using common synthesis precursors and concentrations, the jet-mixing reactor produces silver nanoparticles with a diameter of 5 ± 2 nm, as characterized by TEM, and a monomodal surface plasmon resonance (SPR) in the UV-vis spectrum. In comparison, a batch synthesis using the same concentrations of reactants produces nanoparticles with a diameter of 9 ± 4 nm and a bimodal SPR, indicating that jet-mixing produces a more monodisperse particle size distribution than batch synthesis. For the jet-mixing synthesis, the concentration of the capping agent can be reduced to a value of 0.05 mM while retaining a narrow full-width of half-maximum (FWHM) of the SPR spectrum. Interestingly, decreasing the capping agent quantity from the standard concentration of 0.2 mM to 0.05 mM decreases the FWHM of the SPR, corresponding to a more monodisperse PSD at lower capping agent concentration. This result is attributed to the increased stabilization at lower ion concentrations in the solution. For low capping agent concentrations, additional experiments adding small amounts of sodium nitrate support this observation. Overall, the jet-mixing reactor represents a viable system for the continuous production of size-controlled silver nanoparticles with reduced amounts of capping agent.
more »
« less
- Award ID(s):
- 1653587
- PAR ID:
- 10136926
- Date Published:
- Journal Name:
- Reaction Chemistry & Engineering
- Volume:
- 4
- Issue:
- 10
- ISSN:
- 2058-9883
- Page Range / eLocation ID:
- 1779 to 1789
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
For polymer particles, recent studies emphasized that the particle shape—not size—plays the dominant role in novel applications in fields ranging from nanotechnology, biomedicine, to photonics, which has intensified the quest for fabrication platforms of polymer colloids with complex non-spherical (anisotropic) shapes. Here, we developed a single-step, microfluidic-supported synthesis for anisotropic polyvinyl methacrylate (PVMA) nanoparticles (NPs) by combining the advantages of microfluidics (providing homogeneous conditions for the initial emulsification process) and bulk batch synthesis (providing inhomogenous conditions for the thermal polymerization). Specifically, we tested five interfacial agents regarding their direct impact on the NP shape (from isotropic spherical to anisotropic flower-like shapes) and their concentration-dependent impact (from 0.1 mM to 20 mM) on the NP diameter (from 200 nm to 50 nm). We employed vinyl methacrylate (VMA), a monomer offering two-polymerization active sites. With our work, we contribute to a fundamental understanding of colloidal polymerization towards predictive shapes below the critical 200 nm regime.more » « less
-
null (Ed.)Poly(amino acid)-coated gold nanoparticles hold promise in biomedical applications, particularly because they combine the unique physicochemical properties of the gold core, excellent biocompatibility, and easy functionalization of the poly(amino acid)-capping shell. Here we report a novel method for the preparation of robust hybrid core–shell nanosystems consisting of a Au 144 cluster and a densely grafted polylysine layer. Linear polylysine chains were grown by direct N -carboxyanhydride (NCA) polymerization onto ligands capping the gold nanocluster. The density of the polylysine chains and the thickness of the polymer layer strongly depend on the amount and concentration of the NCA monomer and the initiator. The optical spectra of the so-obtained core–shell nanosystems show a strong surface plasmon resonance (SPR)-like band at 531 nm. In fact, despite maintenance of the gold cluster size and the absence of interparticle aggregation, the polylysine-capped clusters behave as if they have a diameter nearly 4 times larger. To the best of our knowledge, this is the first observation of the growth of a fully developed, very stable SPR-like band for a gold nanocluster of such dimensions. The robust polylysine protective shell makes the nanoparticles very stable under conditions of chemical etching, in the presence of glutathione, and at different pH values, without gold core deshielding or alteration of the SPR-like band. This polymerization method can conceivably be extended to prepare core–shell nanosystems based on other mono- or co-poly(amino acids).more » « less
-
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ∼ 1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.more » « less
-
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ~1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.more » « less
An official website of the United States government

