The El Niño Southern Oscillation (ENSO) is a major source of interannual climate variability. ENSO life cycles and the associated teleconnections evolve over multiple years at a global scale. This analysis is the first attempt to characterize the structure of the risk posed by trans-Pacific ENSO teleconnections to crop production in the greater Pacific Basin region. In this analysis we identify the large-scale atmospheric dynamics of ENSO teleconnections that affect heat and moisture stress during the growing seasons of maize, wheat and soy. We propose a coherent framework for understanding how trans-Pacific ENSO teleconnections pose a correlated risk to crop yields in major agricultural belts of the Americas, Australia and China over the course of an ENSO life cycle by using observations and a multi-model ensemble of climate anomalies during crop flowering seasons. Trans-Pacific ENSO teleconnections are often (but not always) offsetting between major producing regions in the Americas and those in northern China or Australia. El Niños tend to create good maize and soybean growing conditions in the US and southeast South America, but poor growing conditions in northern China, southern Mexico and the Cerrado in Brazil. The opposite is true during La Niña. Wheat growing conditions in southeast South America generally have the opposite sign of those in Australia. Furthermore, multi-year La Niñas can force multi-year growing season anomalies in Argentina and Australia. Most ENSO teleconnections relevant for crop flowering seasons are the result of a single trans-Pacific circulation anomaly that develops in boreal summer and persists through the following spring. During the late summer and early fall of a developing ENSO event, the tropical Pacific forces an atmospheric anomaly in the northern midlatitudes that spans the Pacific from northern China to North America and in the southern midlatitudes from Australia to southeast South America. This anomaly directly links the soybean and maize growing seasons of the US, Mexico and China and the wheat growing seasons of Argentina, southern Brazil and Australia. The ENSO event peaks in boreal winter, when the atmospheric circulation anomalies intensify and affect maize and soybeans in southeast South America. As the event decays, the ENSO-induced circulation anomalies persist through the wheat flowering seasons in China and the US.
more »
« less
Synchronous crop failures and climate-forced production variability
Large-scale modes of climate variability can force widespread crop yield anomalies and are therefore often presented as a risk to food security. We quantify how modes of climate variability contribute to crop production variance. We find that the El Niño Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD), tropical Atlantic variability (TAV), and the North Atlantic Oscillation (NAO) together account for 18, 7, and 6% of globally aggregated maize, soybean, and wheat production variability, respectively. The lower fractions of global-scale soybean and wheat production variability result from substantial but offsetting climate-forced production anomalies. All climate modes are important in at least one region studied. In 1983, ENSO, the only mode capable of forcing globally synchronous crop failures, was responsible for the largest synchronous crop failure in the modern historical record. Our results provide the basis for monitoring, and potentially predicting, simultaneous crop failures.
more »
« less
- Award ID(s):
- 1657209
- PAR ID:
- 10137286
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 5
- Issue:
- 7
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaaw1976
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An analysis of crop yields for the state of Missouri was completed to determine if an interannual or multidecadal variability existed as a result of the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Corn and soybean yields were recorded in kilograms per hectare for each of the six climate regions of Missouri. An analysis using the Mokhov “method of cycles” demonstrated interannual, interdecadal, and multidecadal variations in crop yields. Cross-spectral analysis was used to determine which region was most impacted by ENSO and PDO influenced seasonal (April–September) temperature and precipitation. Interannual (multidecadal) variations found in the spectral analysis represent a relationship to ENSO (PDO) phase, while interdecadal variations represent a possible interaction between ENSO and PDO. Average crop yields were then calculated for each combination of ENSO and PDO phase, displaying a pronounced increase in corn and soybean yields when ENSO is warm and PDO is positive. Climate regions 1, 2, 4, and 6 displayed significant differences (p value of 0.10 or less) in yields between El Niño and La Niña years, representing 55–70 % of Missouri soybean and corn productivity, respectively. Final results give the opportunity to produce seasonal predictions of corn and soybean yields, specific to each climate region in Missouri, based on the combination of ENSO and PDO phases.more » « less
-
Abstract Observations show that the teleconnection between the El Niño‐Southern Oscillation (ENSO) and the Asian summer monsoon (ASM) is non‐stationary. However, the underlying mechanisms are poorly understood due to inadequate availability of reliable, long‐term observations. This study uses two state‐of‐the‐art data assimilation‐based reconstructions of last millennium climate to examine changes in the ENSO–ASM teleconnection; we investigate how modes of (multi‐)decadal climate variability (namely, the Pacific Decadal Oscillation, PDO, and the Atlantic Multidecadal Oscillation, AMO) modulate the ENSO–ASM relationship. Our analyses reveal that the PDO exerts a more pronounced impact on ASM variability than the AMO. By comparing different linear regression models, we find that including the PDO in addition to ENSO cycles can improve prediction of the ASM, especially for the Indian summer monsoon. In particular, dry (wet) anomalies caused by El Niño (La Niña) over India become enhanced during the positive (negative) PDO phases due to a compounding effect. However, composite differences in the ENSO–ASM relationship between positive and negative phases of the PDO and AMO are not statistically significant. A significant influence of the PDO/AMO on the ENSO–ASM relationship occurred only over a limited period within the last millennium. By leveraging the long‐term paleoclimate reconstructions, we document and interrogate the non‐stationary nature of the PDO and AMO in modulating the ENSO–ASM relationship.more » « less
-
Abstract The influence of El Niño–Southern Oscillation (ENSO) in the Asian monsoon region can persist through the post-ENSO summer, after the sea surface temperature (SST) anomalies in the tropical Pacific have dissipated. The long persistence of coherent post-ENSO anomalies is caused by a positive feedback due to interbasin ocean–atmospheric coupling, known as the Indo-western Pacific Ocean capacitor (IPOC) effect, although the feedback mechanism itself does not necessarily rely on the antecedence of ENSO events, suggesting the potential for substantial internal variability independent of ENSO. To investigate the respective role of ENSO forcing and non-ENSO internal variability, we conduct ensemble “forecast” experiments with a full-physics, globally coupled atmosphere–ocean model initialized from a multidecadal tropical Pacific pacemaker simulation. The leading mode of internal variability as represented by the forecast-ensemble spread resembles the post-ENSO IPOC, despite the absence of antecedent ENSO forcing by design. The persistent atmospheric and oceanic anomalies in the leading mode highlight the positive feedback mechanism in the internal variability. The large sample size afforded by the ensemble spread allows us to identify robust non-ENSO precursors of summer IPOC variability, including a cool SST patch over the tropical northwestern Pacific, a warming patch in the tropical North Atlantic, and downwelling oceanic Rossby waves in the tropical Indian Ocean south of the equator. The pathways by which the precursors develop into the summer IPOC mode and the implications for improved predictability are discussed.more » « less
-
Abstract. Elevated surface ozone (O3) concentrations can negatively impact growth and development of crop production by reducing photosynthesis and accelerating leaf senescence. Under unabated climate change, future global O3 concentrations are expected to increase in many regions, adding additional challenges to global agricultural production. Presently, few global process-based crop models consider the effects of O3 stress on crop growth. Here, we incorporated the effects of O3 stress on photosynthesis and leaf senescence into the Decision Support System for Agrotechnology Transfer (DSSAT) crop models for maize, rice, soybean, and wheat. The advanced models reproduced the reported yield declines from observed O3-dose field experiments and O3 exposure responses reported in the literature (O3 relative yield loss RMSE <10 % across all calibrated models). Simulated crop yields decreased as daily O3 concentrations increased above 25 ppb, with average yield losses of 0.16 % to 0.82 % (maize), 0.05 % to 0.63 % (rice), 0.36 % to 0.96 % (soybean), and 0.26 % to 1.23 % (wheat) per ppb O3 increase, depending on the cultivar O3 sensitivity. Increased water deficit stress and elevated CO2 lessen the negative impact of elevated O3 on crop yield, but potential yield gains from CO2 concentration increases may be counteracted by higher O3 concentrations in the future, a potentially important constraint to global change projections for the latest process-based crop models. The improved DSSAT models with O3 representation simulate the effects of O3 stress on crop growth and yield in interaction with other growth factors and can be run in the parallel DSSAT global gridded modeling framework for future studies on O3 impacts under climate change and air pollution scenarios across agroecosystems globally.more » « less
An official website of the United States government

