skip to main content


Title: Recent Advances in the Application of Selectfluor as a “Fluorine‐free” Functional Reagent in Organic Synthesis
Abstract

Selectfluor, [1‐chloromethyl‐4‐fluoro‐1,4‐diazoniabicyclo‐[2.2.2]octane bis(tetrafluoroborate)], is not only an important electrophilic fluorinating agent but also a facile and efficient “fluorine‐free” functional reagent in other organic reactions. In this Minireview, we will present a brief history of Selectfluor as a transition metal oxidant, fluorine cation and radical initiator in “fluorine‐free” functionalizations over the last five years.

 
more » « less
Award ID(s):
1350541 2028770 2029932
NSF-PAR ID:
10137332
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – An Asian Journal
Volume:
15
Issue:
6
ISSN:
1861-4728
Page Range / eLocation ID:
p. 729-741
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electrocatalysts are required for clean energy technologies (for example, water‐splitting and metal‐air batteries). The development of a multifunctional electrocatalyst composed of nitrogen, phosphorus, and fluorine tri‐doped graphene is reported, which was obtained by thermal activation of a mixture of polyaniline‐coated graphene oxide and ammonium hexafluorophosphate (AHF). It was found that thermal decomposition of AHF provides nitrogen, phosphorus, and fluorine sources for tri‐doping with N, P, and F, and simultaneously facilitates template‐free formation of porous structures as a result of thermal gas evolution. The resultant N, P, and F tri‐doped graphene exhibited excellent electrocatalytic activities for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The trifunctional metal‐free catalyst was further used as an OER–HER bifunctional catalyst for oxygen and hydrogen gas production in an electrochemical water‐splitting unit, which was powered by an integrated Zn–air battery based on an air electrode made from the same electrocatalyst for ORR. The integrated unit, fabricated from the newly developed N, P, and F tri‐doped graphene multifunctional metal‐free catalyst, can operate in ambient air with a high gas production rate of 0.496 and 0.254 μL s−1for hydrogen and oxygen gas, respectively, showing great potential for practical applications.

     
    more » « less
  2. Abstract

    MXenes are a rapidly growing family of 2D transition metal carbides and nitrides that are promising for various applications, including energy storage and conversion, electronics, and healthcare. Hydrofluoric‐acid‐based etchants are typically used for large‐scale and high‐throughput synthesis of MXenes, which also leads to a mixture of surface terminations that impede MXene properties. Herein, a computational thermodynamic model with experimental validation is presented to explore the feasibility of fluorine‐free synthesis of MXenes with uniform surface terminations by dry selective extraction (DSE) from precursor MAX phases using iodine vapors. A range of MXenes and respective precursor compositions are systematically screened using first‐principles calculations to find candidates with high phase stability and low etching energy. A thermodynamic model based on the “CALculation of PHAse Diagrams” (CALPHAD) approach is further demonstrated, using Ti3C2I2as an example, to assess the Gibbs free energy of the DSE reaction and the state of the byproducts as a function of temperature and pressure. Based on the assessment, the optimal synthesis temperature and vapor pressure are predicted and further verified by experiments. This work opens an avenue for scalable, fluorine‐free dry synthesis of MXenes with compositions and surface chemistries that are not accessible using wet chemical etching.

     
    more » « less
  3. Abstract

    An intramolecular SNAr displacement of oneo‐fluorine atom of ameso‐pentafluorophenyl‐substituted porphyrin metal complex by a neighboring β‐amino functionality generated the correspondingmeso‐fluorophenyl‐substituted metallo‐quinolino[2,3,4‐at]porphyrins that are not accessible using established quinoline‐annulation methodologies. The Cu(II), Ni(II), and Zn(II) complexes were thus prepared. The parent free base quinolino[2,3,4‐at]porphyrin is accessible only by demetallation of the copper or zinc complexes. A strong through‐space NMR‐spectroscopic coupling between the remainingo‐fluorine atoms on the annulatedmeso‐aryl group and the β‐hydrogen atom on the adjacent pyrrole moiety provide a clear spectroscopic signature for the annulation. Quinoline‐annulation alters the optical properties significantly. On account of the presence of the β‐amino functionality, all quinoline‐annulated porphyrins show strong halochromic responses with Brønsted acids and bases, the prerequisite for their potential use in chemosensing applications.

     
    more » « less
  4. Abstract

    MXenes, two‐dimensional (2D) transition metal carbides and/or nitrides, possess surface termination groups such as hydroxyl, oxygen, and fluorine, which are available for surface functionalization. Their surface chemistry is critical in many applications. This article reports amine functionalization of Ti3C2TxMXene surface with [3‐(2‐aminoethylamino)‐propyl]trimethoxysilane (AEAPTMS). Characterization techniques such as X‐ray photoelectron spectroscopy verify the success of the surface functionalization and confirm that the silane coupling agent bonds to Ti3C2Txsurface both physically and chemically. The functionalization changes the MXene surface charge from −35 to +25 mV at neutral pH, which allows for in situ preparation of self‐assembled films. Further, surface charge measurements of the functionalized MXene at different pH values show that the functionalized MXene has an isoelectric point at a pH around 10.7, and the highest reported positive surface charge of +62 mV at a pH of 2.58. Furthermore, the existence of a mixture of different orientations of AEAPTMS and the simultaneous presence of protonated and free amine groups on the surface of Ti3C2Txare demonstrated. The availability of free amine groups on the surface potentially permits the fabrication of crosslinked electrically conductive MXene/epoxy composites, dye adsorbents, high‐performance membranes, and drug carriers. Surface modifications of this type are applicable to many other MXenes.

     
    more » « less
  5. Abstract

    With the power conversion efficiencies of perovskite solar cells (PSCs) exceeding 25%, the PSCs are a step closer to initial industrialization. Prior to transferring from laboratory fabrication to industrial manufacturing, issues such as scalability, material cost, and production line compatibility that significantly impact the manufacturing remain to be addressed. Here, breakthroughs on all these fronts are reported. Carbon‐based PSCs with architecture fluorine doped tin oxide (FTO)/electron transport layer/perovskite/carbon, that eliminate the need for the hole transport layer and noble metal electrode, provide ultralow‐cost configuration. This PSC architecture is manufactured using a scalable and industrially compatible electrospray (ES) technique, which enables continuous printing of all the cell layers. The ES deposited electron transport layer and perovskite layer exhibit properties comparable to that of the laboratory‐scale spin coating method. The ES deposited carbon electrode layer exhibits superior conductivity and interfacial microstructure in comparison to films synthesized using the conventional doctor blading technique. As a result, the fully ES printed carbon‐based PSCs show a record 14.41% power conversion efficiency, rivaling the state‐of‐the‐art hole transporter‐free PSCs. These results will immediately have an impact on the scalable production of PSCs.

     
    more » « less