- PAR ID:
- 10137576
- Date Published:
- Journal Name:
- IEEE CAMSAP 2019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Principal Component Analysis (PCA) is a standard dimensionality reduction technique, but it treats all samples uniformly, making it suboptimal for heterogeneous data that are increasingly common in modern settings. This paper proposes a PCA variant for samples with heterogeneous noise levels, i.e., heteroscedastic noise, that naturally arise when some of the data come from higher quality sources than others. The technique handles heteroscedasticity by incorporating it in the statistical model of a probabilistic PCA. The resulting optimization problem is an interesting nonconvex problem related to but not seemingly solved by singular value decomposition, and this paper derives an expectation maximization (EM) algorithm. Numerical experiments illustrate the benefits of using the proposed method to combine samples with heteroscedastic noise in a single analysis, as well as benefits of careful initialization for the EM algorithm.more » « less
-
Principal component analysis (PCA) is a key tool in the field of data dimensionality reduction that is useful for various data science problems. However, many applications involve heterogeneous data that varies in quality due to noise characteristics associated with different sources of the data. Methods that deal with this mixed dataset are known as heteroscedastic methods. Current methods like HePPCAT make Gaussian assumptions of the basis coefficients that may not hold in practice. Other methods such as Weighted PCA (WPCA) assume the noise variances are known, which may be difficult to know in practice. This paper develops a PCA method that can estimate the sample-wise noise variances and use this information in the model to improve the estimate of the subspace basis associated with the low-rank structure of the data. This is done without distributional assumptions of the low-rank component and without assuming the noise variances are known. Simulations show the effectiveness of accounting for such heteroscedasticity in the data, the benefits of using such a method with all of the data versus retaining only good data, and comparisons are made against other PCA methods established in the literature like PCA, Robust PCA (RPCA), and HePPCAT. Code available at https://github.com/javiersc1/ALPCAH.more » « less
-
Abstract When the dimension of data is comparable to or larger than the number of data samples, principal components analysis (PCA) may exhibit problematic high-dimensional noise. In this work, we propose an empirical Bayes PCA method that reduces this noise by estimating a joint prior distribution for the principal components. EB-PCA is based on the classical Kiefer–Wolfowitz non-parametric maximum likelihood estimator for empirical Bayes estimation, distributional results derived from random matrix theory for the sample PCs and iterative refinement using an approximate message passing (AMP) algorithm. In theoretical ‘spiked’ models, EB-PCA achieves Bayes-optimal estimation accuracy in the same settings as an oracle Bayes AMP procedure that knows the true priors. Empirically, EB-PCA significantly improves over PCA when there is strong prior structure, both in simulation and on quantitative benchmarks constructed from the 1000 Genomes Project and the International HapMap Project. An illustration is presented for analysis of gene expression data obtained by single-cell RNA-seq.
-
null (Ed.)Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized. In NSW the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensinal space.more » « less
Our main result is an exact polynomial-time algorithm for the two-criteria dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for k=2 groups, resolving an open problem of Samadi et al.[NeurIPS18], and a polynomial time algorithm for NSW objective for k=2 groups. We also give approximation algorithms for k>2. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with the results of several experiments indicating improved performance and generalized application of our algorithm on real-world datasets.
-
Dimensionality reduction is a classical technique widely used for data analysis. One foundational instantiation is Principal Component Analysis (PCA), which minimizes the average reconstruction error. In this paper, we introduce the multi-criteria dimensionality reduction problem where we are given multiple objectives that need to be optimized simultaneously. As an application, our model captures several fairness criteria for dimensionality reduction such as the Fair-PCA problem introduced by Samadi et al. [NeurIPS18] and the Nash Social Welfare (NSW) problem. In the Fair-PCA problem, the input data is divided into k groups, and the goal is to find a single d-dimensional representation for all groups for which the maximum reconstruction error of any one group is minimized. In NSW the goal is to maximize the product of the individual variances of the groups achieved by the common low-dimensinal space. Our main result is an exact polynomial-time algorithm for the two-criteria dimensionality reduction problem when the two criteria are increasing concave functions. As an application of this result, we obtain a polynomial time algorithm for Fair-PCA for k=2 groups, resolving an open problem of Samadi et al.[NeurIPS18], and a polynomial time algorithm for NSW objective for k=2 groups. We also give approximation algorithms for k>2. Our technical contribution in the above results is to prove new low-rank properties of extreme point solutions to semi-definite programs. We conclude with the results of several experiments indicating improved performance and generalized application of our algorithm on real-world datasets.more » « less