skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On reduction of differential inclusions and Lyapunov stability
In this paper, locally Lipschitz, regular functions are utilized to identify and remove infeasible directions from set-valued maps that define differential inclusions. The resulting reduced set-valued map is pointwise smaller (in the sense of set containment) than the original set-valued map. The corresponding reduced differential inclusion, defined by the reduced set-valued map, is utilized to develop a generalized notion of a derivative for locally Lipschitz candidate Lyapunov functions in the direction(s) of a set-valued map. The developed generalized derivative yields less conservative statements of Lyapunov stability theorems, invariance theorems, invariance-like results, and Matrosov theorems for differential inclusions. Included illustrative examples demonstrate the utility of the developed theory.  more » « less
Award ID(s):
1762829
PAR ID:
10137859
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ESAIM: Control, Optimisation and Calculus of Variations
Volume:
26
ISSN:
1292-8119
Page Range / eLocation ID:
24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper generalizes the LaSalle–Yoshizawa Theorem to switched nonsmooth systems. The Filippov and Krasovskii regularizations of a switched system are shown to be contained within the convex hull of the Filippov and Krasovskii regularizations of the subsystems, respectively. A common candidate Lyapunov function that has a negative semidefinite generalized time derivative along the trajectories of the subsystems is shown to be sufficient to establish LaSalle–Yoshizawa-like results for the switched system. Of independent interest, are the results on approximate continuity and Filippov regularization of set-valued maps, reduction of differential inclusions using Lipschitz continuous regular functions, and comparative remarks on different generalizations of the time derivative along the trajectories of a nonsmooth system. 
    more » « less
  2. We study local filters for the Lipschitz property of real-valued functions f : V → [0,r], where the Lipschitz property is defined with respect to an arbitrary undirected graph G = (V, E ). We give nearly optimal local Lipschitz filters both with respect to ℓ1-distance and ℓ0-distance. Previous work only considered unbounded- range functions over [n]d. Jha and Raskhodnikova (SICOMP ‘13) gave an algorithm for such functions with lookup complexity exponential in d, which Awasthi et al. (ACM Trans. Comput. Theory) showed was necessary in this setting. We demonstrate that important applications of local Lipschitz filters can be accomplished with filters for functions whose range is bounded in [0,r]. For functions f : [n]d → [0,r], we achieve running time (dr log n )O (log r ) for the ℓ1-respecting filter and dO(r) polylog n for the ℓ0-respecting filter, thus circumventing the lower bound. Our local filters provide a novel Lipschitz extension that can be implemented locally. Furthermore, we show that our algorithms are nearly optimal in terms of the dependence on r for the domain {0,1}d, an important special case of the domain [n]d. In addition, our lower bound resolves an open question of Awasthi et al., removing one of the conditions necessary for their lower bound for general range. We prove our lower bound via a reduction from distribution-free Lipschitz testing and a new technique for proving hardness for adaptive algorithms. Finally, we provide two applications of our local filters to real-valued functions, with no restrictions on the range. In the first application, we use them in conjunction with the Laplace mechanism for differential privacy and noisy binary search to provide mechanisms for privately releasing outputs of black-box functions, even in the presence of malicious clients. In particular, our differentially private mechanism for arbitrary real-valued functions runs in time 2polylog min(r,nd ) and, for honest clients, has accuracy comparable to the Laplace mechanism for Lipschitz functions, up to a factor of O (log min(r,nd )). In the second application, we use our local filters to obtain the first nontrivial tolerant tester for the Lipschitz property. Our tester works for functions of the form f : {0,1}d → ℝ, makes queries, and has tolerance ratio 2.01. Our applications demonstrate that local filters for bounded-range functions can be applied to construct efficient algorithms for arbitrary real-valued functions. 
    more » « less
  3. It is known that for $$X$$ a nowhere locally compact metric space, the set of bounded continuous, nowhere locally uniformly continuous real-valued functions on $$X$$ contains a dense $$G_\delta$$ set in the space $$C_b(X)$$ of all bounded continuous real-valued functions on $$X$$ in the supremum norm. Furthermore, when $$X$$ is separable, the set of bounded continuous, nowhere locally uniformly continuous real-valued functions on $$X$$ is itself a $$G_\delta$$ set. We show that in contrast, when $$X$$ is nonseparable, this set of functions is not even a Borel set. 
    more » « less
  4. This work presents a new safe control framework for Euler-Lagrange (EL) systems with limited model information, external disturbances, and measurement uncertainties. The EL system is decomposed into two subsystems called the proxy subsystem and the virtual tracking subsystem. An adaptive safe controller based on barrier Lyapunov functions is designed for the virtual tracking subsystem to ensure the boundedness of the safe velocity tracking error, and a safe controller based on control barrier functions is designed for the proxy subsystem to ensure controlled invariance of the safe set defined either in the joint space or task space. Theorems that guarantee the safety of the proposed controllers are provided. In contrast to existing safe control strategies for EL systems, the proposed method requires much less model information and can ensure safety rather than input-to-state safety. Simulation results are provided to illustrate the effectiveness of the proposed method. 
    more » « less
  5. We propose a set of techniques to efficiently importance sample the derivatives of a wide range of Bidirectional Reflectance Distribution Function (BRDF) models. In differentiable rendering, BRDFs are replaced by their differential BRDF counterparts, which are real-valued and can have negative values. This leads to a new source of variance arising from their change in sign. Real-valued functions cannot be perfectly importance sampled by a positive-valued PDF, and the direct application of BRDF sampling leads to high variance. Previous attempts at antithetic sampling only addressed the derivative with the roughness parameter of isotropic microfacet BRDFs. Our work generalizes BRDF derivative sampling to anisotropic microfacet models, mixture BRDFs, Oren-Nayar, Hanrahan-Krueger, among other analytic BRDFs. Our method first decomposes the real-valued differential BRDF into a sum of single-signed functions, eliminating variance from a change in sign. Next, we importance sample each of the resulting single-signed functions separately. The first decomposition, positivization, partitions the real-valued function based on its sign, and is effective at variance reduction when applicable. However, it requires analytic knowledge of the roots of the differential BRDF, and for it to be analytically integrable too. Our key insight is that the single-signed functions can have overlapping support, which significantly broadens the ways we can decompose a real-valued function. Our product and mixture decompositions exploit this property, and they allow us to support several BRDF derivatives that positivization could not handle. For a wide variety of BRDF derivatives, our method significantly reduces the variance (up to 58× in some cases) at equal computation cost and enables better recovery of spatially varying textures through gradient-descent-based inverse rendering. 
    more » « less