skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gearing up for the 21st century space race
A new space race is imminent, with several industry players working towards satellite-based Internet connectivity. While satellite networks are not themselves new, these recent proposals are aimed at orders of magnitude higher bandwidth and much lower latency, with constellations planned to comprise thousands of satellites. These are not merely far future plans — the first satellite launches have already commenced, and substantial planned capacity has already been sold. It is thus critical that networking researchers engage actively with this research space, instead of missing what may be one of the most significant modern developments in networking. In our first steps in this direction, we find that this new breed of satellite networks could potentially compete with today’s ISPs in many settings, and in fact offer lower latencies than present fiber infrastructure over long distances. We thus elucidate some of the unique challenges these networks present at virtually all layers, from topology design and ISP economics, to routing and congestion control.  more » « less
Award ID(s):
1763742 1763841 1763492
PAR ID:
10140456
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ACM Workshop on Hot Topics in Networks
Page Range / eLocation ID:
113 to 119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Atmospheric processes involve both space and time. Thus, humans looking at atmospheric imagery can often spot important signals in an animated loop of an image sequence not apparent in an individual (static) image. Utilizing such signals with automated algorithms requires the ability to identify complex spatiotemporal patterns in image sequences. That is a very challenging task due to the endless possibilities of patterns in both space and time. Here, we review different concepts and techniques that are useful to extract spatiotemporal signals from meteorological image sequences to expand the effectiveness of AI algorithms for classification and prediction tasks. We first present two applications that motivate the need for these approaches in meteorology, namely the detection of convection from satellite imagery and solar forecasting. Then we provide an overview of concepts and techniques that are helpful for the interpretation of meteorological image sequences, such as (a) feature engineering methods using (i) meteorological knowledge, (ii) classic image processing, (iii) harmonic analysis, and (iv) topological data analysis; (b) ways to use convolutional neural networks for this purpose with emphasis on discussing different convolution filters (2D/3D/LSTM-convolution); and (c) a brief survey of several other concepts, including the concept of “attention” in neural networks and its utility for the interpretation of image sequences and strategies from self-supervised and transfer learning to reduce the need for large labeled datasets. We hope that presenting an overview of these tools—many of which are not new but underutilized in this context—will accelerate progress in this area. 
    more » « less
  2. Lemmens, S; Flohrer, T; Schmitz, F (Ed.)
    Radio telescopes observe extremely faint emission from astronomical objects, ranging from compact sources to large scale structures that can be seen across the whole sky. Satellites actively transmit at radio frequencies (particularly at 10±20 GHz, but usage of increasing broader frequency ranges are already planned for the future by satellite operators), and can appear as bright as the Sun in radio astronomy observations. Remote locations have historically enabled telescopes to avoid most interference, however this is no longer the case with dramatically increasing numbers of satellites that transmit everywhere on Earth. Even more remote locations such as the far side of the Moon may provide new radio astronomy observation opportunities, but only if they are protected from satellite transmissions. Improving our understanding of satellite transmissions on radio telescopes across the whole spectrum and beyond is urgently needed to overcome this new observational challenge, as part of ensuring the future access to dark and quiet skies. In this contribution we summarise the current status of observations of active satellites at radio frequencies, the implications for future astronomical observations, and the longer-term consequences of an increasing number of active satellites. This will include frequencies where satellites actively transmit, where they unintentionally also transmit, and considerations about thermal emission and other unintended emissions. This work is ongoing through the IAU CPS. 
    more » « less
  3. With the development of space-air-ground integrated networks, Low Earth Orbit (LEO) satellite networks are envisioned to play a crucial role in providing data transmission services in the 6G era. However, the increasing number of connected devices leads to a surge in data volume and bursty traffic patterns. Ensuring the communication stability of LEO networks has thus become essential. While Lyapunov optimization has been applied to network optimization for decades and can guarantee stability when traffic rates remain within the capacity region, its applicability in LEO satellite networks is limited due to the bursty and dynamic nature of LEO network traffic. To address this issue, we propose a robust Lyapunov optimization method to ensure stability in LEO satellite networks. We theoretically show that for a stabilizable network system, traffic rates do not have to always stay within the capacity region at every time slot. Instead, the network can accommodate temporary capacity region violations, while ensuring the long-term network stability. Extensive simulations under various traffic conditions validate the effectiveness of the robust Lyapunov optimization method, demonstrating that LEO satellite networks can maintain stability under finite violations of the capacity region. 
    more » « less
  4. Software-Defined Networking (SDN) has been changing inflexible networks in software-based programmable networks for more flexibility, scalability, and visibility into networking. At the same time, it brings many new security challenges, but there are very few educational materials for students in learning about SDN security. In this workshop, we present our newly designed SDN security education materials, which can be used to meet the ever-increasing demand for high-quality cybersecurity professionals with expertise in SDN security. For effective hands-on learning, the security labs are designed in CloudLab, a free open cloud platform supported by NSF. Participants receive handouts describing security problems, lab instructions, techniques to use CloudLab, and worksheets for Q&A, which can be directly used for their networking classes at their home institutions. The workshop proceeds in three sessions in which we: present the way to use CloudLab and to understand SDN; practice in simulating three networking attacks in SDN on CloudLab; and discussion and critique in small groups for new SDN security labs. 
    more » « less
  5. Abstract On 3 February 2022, SpaceX launched 49 Starlink satellites, 38 of which unexpectedly de‐orbited. Although this event was attributed to space weather, definitive causality remained elusive because space weather conditions were not extreme. In this study, we identify solar sources of the interplanetary coronal mass ejections that were responsible for the geomagnetic storms around the time of launch of the Starlink satellites and for the first time, investigate their impact on Earth's magnetosphere using magnetohydrodynamic modeling. The model results demonstrate that the satellites were launched into an already disturbed space environment that persisted over several days. However, on performing comparative satellite orbital decay analyses, we find that space weather alone was not responsible but conspired together with a low‐altitude insertion and low satellite mass‐to‐area ratio to precipitate this unusual loss. Our work bridges space weather causality across the Sun–Earth system—with relevance for space‐based human technologies. 
    more » « less