skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reducing feature size in femtosecond laser ablation of fused silica by exciton-seeded photoionization
We demonstrate a method of laser ablation with reduced feature size by using a pair of ultrashort pulses that are partially overlapped in space. By tuning the delay between the two pulses, features within the overlapping area are obtained on the surface of fused silica. The observed dependence of the feature position on delays longer than the free-carrier lifetime indicates an ionization pathway initiated by self-trapped excitons. This method could be used to enhance the resolution of laser-based lithography.  more » « less
Award ID(s):
1846671
PAR ID:
10140822
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
45
Issue:
7
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 1994
Size(s):
Article No. 1994
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The carrier excitation, relaxation, energy transport, and conversion processes during light‐nanocrystal (NC) interactions have been intensively investigated for applications in optoelectronics, photocatalysis, and photovoltaics. However, there are limited studies on the non‐equilibrium heating under relatively high laser excitation that leads to NCs sintering. Here, the authors use femtosecond laser two‐pulse correlation and in‐situ optical transmission probing to investigate the non‐equilibrium heating of NCs and transient sintering dynamics. First, a two‐pulse correlation study reveals that the sintering rate strongly increases when the two heating laser pulses are temporally separated by <10 ps. Second, the sintering rate is found to increase nonlinearly with laser fluence when heating with ≈700 fs laser pulses. By three‐temperature modeling, the NC sintering mechanism mediated by electron induced ligand transformation is suggested. The ultrafast and non‐equilibrium process facilitates sintering in dry (spin‐coated) and wet (solvent suspended) environments. The nonlinear dependence of sintering rate on laser fluence is exploited to print sub‐diffraction‐limited features in NC suspension. The smallest feature printed is ≈200 nm, which is ≈¼ of the laser wavelength. These findings provide a new perspective toward nanomanufacturing development based on probing and engineering ultrafast transport phenomena in functional NCs. 
    more » « less
  2. Pursuing ever-smaller feature size in laser-based lithography is a research topic of vital importance to keep this technique competitive with other micro-/nano-fabrication methods. Features smaller than the diffraction-limited spot size can be obtained by “thresholding”, which utilizes the deterministic nature of damage threshold with ultrashort laser pulses and is achieved by precisely tuning pulse energies so that only the central portion of the focal spot produces permanent modification. In this paper, we examine the formulation commonly used to describe thresholding and show that the relationship between feature size (r) and laser fluence (F) is invariant with respect to the nature of laser absorption. Verified by our experiments performed on metal, semiconductor, and dielectric samples, such invariance is used to predict the smallest feature size that can be achieved for different materials in a real-world system. 
    more » « less
  3. Recent developments in ultrafast laser technology have resulted in novel few-cycle sources in the mid-infrared. Accurately characterizing the time-dependent intensities and electric field waveforms of such laser pulses is essential to their applications in strong-field physics and attosecond pulse generation, but this remains a challenge. Recently, it was shown that tunnel ionization can provide an ultrafast temporal “gate” for characterizing high-energy few-cycle laser waveforms capable of ionizing air. Here, we show that tunneling and multiphoton excitation in a dielectric solid can provide a means to measure lower-energy and longer-wavelength pulses, and we apply the technique to characterize microjoule-level near- and mid-infrared pulses. The method lends itself to both all-optical and on-chip detection of laser waveforms, as well as single-shot detection geometries. 
    more » « less
  4. Laser induced fluorescence is used to measure argon ion heating during magnetic reconnection in the PHase Space MApping experiment (PHASMA). Sufficient signal-to-noise ratio (SNR) of the processed signal with pulsed laser injection is a delicate balance between saturation of the absorption line and injecting enough laser power to overcome the spontaneous emission of the plasma at the fluorescence wavelength. Averaging over many laser pulses and integrating over the fluorescence lifetime improves the SNR of the processed signal (processed SNR) when the SNR of the laser pulse time series is small (pulse SNR), but for laser powers small enough to avoid saturation, averaging over hundreds of pulses is needed to obtain an appreciable processed SNR over the entire Doppler-broadened absorption line. Here, we describe a matched filter processing method that significantly improves the SNR of the final measurement with fewer shots averaged. Investigation of simulated measurements validated by experimental results suggests that the matched filter method provides up to a 20% improvement in the processed SNR, resulting in less uncertainty in distribution function fits. 
    more » « less
  5. We report the modification of a gas phase ultrafast electron diffraction (UED) instrument that enables experiments with both gas and condensed matter targets, where a time-resolved experiment with sub-picosecond resolution is demonstrated with solid state samples. The instrument relies on a hybrid DC-RF acceleration structure to deliver femtosecond electron pulses on the target, which is synchronized with femtosecond laser pulses. The laser pulses and electron pulses are used to excite the sample and to probe the structural dynamics, respectively. The new system is added with capabilities to perform transmission UED on thin solid samples. It allows for cooling samples to cryogenic temperatures and to carry out time-resolved measurements. We tested the cooling capability by recording diffraction patterns of temperature dependent charge density waves in 1T-TaS2. The time-resolved capability is experimentally verified by capturing the dynamics in photoexcited single-crystal gold. 
    more » « less