skip to main content


Title: Biofilms at interfaces: microbial distribution in floating films
Cellular motility is a key function guiding microbial adhesion to interfaces, which is the first step in the formation of biofilms. The close association of biofilms and bioremediation has prompted extensive research aimed at comprehending the physics of microbial locomotion near interfaces. We study the dynamics and statistics of microorganisms in a ‘floating biofilm’, i.e. , a confinement with an air–liquid interface on one side and a liquid–liquid interface on the other. We use a very general mathematical model, based on a multipole representation and probabilistic simulations, to ascertain the spatial distribution of microorganisms in films of different viscosities. Our results reveal that microorganisms can be distributed symmetrically or asymmetrically across the height of the film, depending on their morphology and the ratio of the film's viscosity to that of the fluid substrate. Long-flagellated, elongated bacteria exhibit stable swimming parallel to the liquid–liquid interface when the bacterial film is less viscous than the underlying fluid. Bacteria with shorter flagella on the other hand, swim away from the liquid–liquid interface and accumulate at the free surface. We also analyze microorganism dynamics in a flowing film and show how a microorganism's ability to resist ‘flow-induced-erosion’ from interfaces is affected by its elongation and mode of propulsion. Our study generalizes past efforts on understanding microorganism dynamics under confinement by interfaces and provides key insights on biofilm initiation at liquid–liquid interfaces.  more » « less
Award ID(s):
1700961 1604423
NSF-PAR ID:
10140858
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Soft Matter
Volume:
16
Issue:
7
ISSN:
1744-683X
Page Range / eLocation ID:
1731 to 1750
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Butler, Geraldine (Ed.)
    ABSTRACT The ability to form biofilms is shared by many microorganisms, including archaea. Cells in a biofilm are encased in extracellular polymeric substances that typically include polysaccharides, proteins, and extracellular DNA, conferring protection while providing a structure that allows for optimal nutrient flow. In many bacteria, flagella and evolutionarily conserved type IV pili are required for the formation of biofilms on solid surfaces or floating at the air-liquid interface of liquid media. Similarly, in many archaea it has been demonstrated that type IV pili and, in a subset of these species, archaella are required for biofilm formation on solid surfaces. Additionally, in the model archaeon Haloferax volcanii , chemotaxis and AglB-dependent glycosylation play important roles in this process. H. volcanii also forms immersed biofilms in liquid cultures poured into petri dishes. This study reveals that mutants of this haloarchaeon that interfere with the biosynthesis of type IV pili or archaella, as well as a chemotaxis-targeting transposon and aglB deletion mutants, lack obvious defects in biofilms formed in liquid cultures. Strikingly, we have observed that these liquid-based biofilms are capable of rearrangement into honeycomb-like patterns that rapidly form upon removal of the petri dish lid, a phenomenon that is not dependent on changes in light or oxygen concentration but can be induced by controlled reduction of humidity. Taken together, this study demonstrates that H. volcanii requires novel, unidentified strategies for immersed liquid biofilm formation and also exhibits rapid structural rearrangements. IMPORTANCE This first molecular biological study of archaeal immersed liquid biofilms advances our basic biological understanding of the model archaeon Haloferax volcanii . Data gleaned from this study also provide an invaluable foundation for future studies to uncover components required for immersed liquid biofilms in this haloarchaeon and also potentially for liquid biofilm formation in general, which is poorly understood compared to the formation of biofilms on surfaces. Moreover, this first description of rapid honeycomb pattern formation is likely to yield novel insights into the underlying structural architecture of extracellular polymeric substances and cells within immersed liquid biofilms. 
    more » « less
  2. Evaluating surface bacterial growth at buried interfaces can be problematic due to the difficulties associated with obtaining samples. In this work, we present a new method to detect signals from microorganisms at buried interfaces that is nondestructive and can be conducted continuously. Inspired by vascular systems in nature that permit chemical communication between the surface and underlying tissues of an organism, we created a system in which an inert carrier fluid could be introduced into an empty vascular network embedded in a polymer matrix. When a microorganism layer was grown on top, small molecules produced by the growth process would diffuse down into the carrier fluid, which could then be collected and analyzed. We used this system to nondestructively detect signals from a surface layer of Escherichia coli using conductivity, ultraviolet–visible (UV–vis) absorbance spectroscopy, and high-performance liquid chromatography (HPLC) for organic acids, methods that ranged in sensitivity, time-to-result, and cost. Carrier fluid from sample vascularized polymers with surface bacterial growth recorded significantly higher values in both conductivity and absorbance at 350 nm compared to controls with no bacteria after 24 h. HPLC analysis showed three clear peaks that varied between the samples with bacteria and the controls without. Tests tracking the change in signals over 48 h showed clear trends that matched the bacterial growth curves, demonstrating the system’s ability to monitor changes over time. A 2D finite element model of the system closely matched the experimental results, confirming the predictability of the system. Finally, tests using clinically relevant Staphylococcus aureus and Pseudomonas aeruginosa yielded differences in conductivity, absorbance, and HPLC peak areas unique to each species. This work lays the foundation for the use of vascularized polymers as an adaptive system for the continuous, nondestructive detection of surface microorganisms at buried interfaces in both industry and medicine. 
    more » « less
  3. DeAngelis, Kristen M. (Ed.)
    ABSTRACT Microbial interactions are often mediated by diffusible small molecules, including secondary metabolites, that play roles in cell-to-cell signaling and inhibition of competitors. Biofilms are often “hot spots” for high concentrations of bacteria and their secondary metabolites, which make them ideal systems for the study of small-molecule contributions to microbial interactions. Here, we use a five-member synthetic community consisting of Roseobacteraceae representatives to investigate the role of secondary metabolites on microbial biofilm dynamics. One synthetic community member, Rhodobacterales strain Y4I, possesses two acylated homoserine lactone (AHL)-based cell-to-cell signaling systems ( pgaRI and phaRI ) as well as a nonribosomal peptide synthase gene ( igi ) cluster that encodes the antimicrobial indigoidine. Through serial substitution of Y4I with mutants deficient in single signaling molecule pathways, the contribution of these small-molecule systems could be assessed. As secondary metabolite production is dependent upon central metabolites, the influence of growth substrate (i.e., complex medium versus defined medium with a single carbon substrate) on these dynamics was also considered. Depending on the Y4I mutant genotype included, community dynamics ranged from competitive to cooperative. The observed interactions were mostly competitive in nature. However, the community harboring a Y4I variant that was both impaired in quorum sensing (QS) pathways and unable to produce indigoidine ( pgaR variant) shifted toward more cooperative interactions over time. These cooperative interactions were enhanced in the defined growth medium. The results presented provide a framework for deciphering complex, small-molecule-mediated interactions that have broad application to microbial biology. IMPORTANCE Microbial biofilms play critical roles in marine ecosystems and are hot spots for microbial interactions that play a role in the development and function of these communities. Roseobacteraceae are an abundant and active family of marine heterotrophic bacteria forming close associations with phytoplankton and carrying out key transformations in biogeochemical cycles. Group members are aggressive primary colonizers of surfaces, where they set the stage for the development of multispecies biofilm communities. Few studies have examined the impact of secondary metabolites, such as cell-to-cell signaling and antimicrobial production, on marine microbial biofilm community structure. Here, we assessed the impact of secondary metabolites on microbial interactions using a synthetic, five-member Roseobacteraceae community by measuring species composition and biomass production during biofilm growth. We present evidence that secondary metabolites influence social behaviors within these multispecies microbial biofilms, thereby improving understanding of bacterial secondary metabolite production influence on social behaviors within marine microbial biofilm communities. 
    more » « less
  4. Villanueva, Laura (Ed.)
    ABSTRACT Most microorganisms exist in biofilms, which comprise aggregates of cells surrounded by an extracellular matrix that provides protection from external stresses. Based on the conditions under which they form, biofilm structures vary in significant ways. For instance, biofilms that develop when microbes are incubated under static conditions differ from those formed when microbes encounter the shear forces of a flowing liquid. Moreover, biofilms develop dynamically over time. Here, we describe a cost-effective coverslip holder, printed with a three-dimensional (3D) printer, that facilitates surface adhesion assays under a broad range of standing and shaking culture conditions. This m ulti p anel ad hesion (mPAD) mount further allows cultures to be sampled at multiple time points, ensuring consistency and comparability between samples and enabling analyses of the dynamics of biofilm formation. As a proof of principle, using the mPAD mount for shaking, oxic cultures, we confirm previous flow chamber experiments showing that the Pseudomonas aeruginosa wild-type strain and a phenazine deletion mutant (Δ phz ) strain form biofilms with similar structure but reduced density in the mutant strain. Extending this analysis to anoxic conditions, we reveal that microcolony formation and biofilm formation can only be observed under shaking conditions and are decreased in the Δ phz mutant compared to wild-type cultures, indicating that phenazines are crucial for the formation of biofilms if oxygen as an electron acceptor is unavailable. Furthermore, while the model archaeon Haloferax volcanii does not require archaella for surface attachment under static conditions, we demonstrate that an H. volcanii mutant that lacks archaella is impaired in early stages of biofilm formation under shaking conditions. IMPORTANCE Due to the versatility of the mPAD mount, we anticipate that it will aid the analysis of biofilm formation in a broad range of bacteria and archaea. Thereby, it contributes to answering critical biological questions about the regulatory and structural components of biofilm formation and understanding this process in a wide array of environmental, biotechnological, and medical contexts. 
    more » « less
  5. The natural habitats of planktonic and swimming microorganisms, from algae in the oceans to bacteria living in soil or intestines, are characterized by highly heterogeneous fluid flows. The complex interplay of flow-field topology, self-propulsion, and porous microstructure is essential to a wide range of biophysical and ecological processes, including marine oxygen production, remineralization of organic matter, and biofilm formation. Although much progress has been made in the understanding of microbial hydrodynamics and surface interactions over the last decade, the dispersion of active suspensions in complex flow environments still poses unsolved fundamental questions that preclude predictive models for microbial transport and spreading under realistic conditions. Here, we combine experiments and simulations to identify the key physical mechanisms and scaling laws governing the dispersal of swimming bacteria in idealized porous media flows. By tracing the scattering dynamics of swimming bacteria in microfluidic crystal lattices, we show that hydrodynamic gradients hinder transverse bacterial dispersion, thereby enhancing stream-wise dispersion ∼ 100 -fold beyond canonical Taylor–Aris dispersion of passive Brownian particles. Our analysis further reveals that hydrodynamic cell reorientation and Lagrangian flow structure induce filamentous density patterns that depend upon the incident angle of the flow and disorder of the medium, in striking analogy to classical light-scattering experiments. 
    more » « less