skip to main content


Title: Temporal and spatial variations in magmatism and transpression in a Cretaceous arc, Median Batholith, Fiordland, New Zealand
Abstract We investigated the interplay between deformation and pluton emplacement with the goal of providing insights into the role of transpression and arc magmatism in forming and modifying continental arc crust. We present 39 new laser-ablation–split-stream–inductively coupled plasma–mass spectrometry (LASS-ICP-MS) and secondary ion mass spectrometry (SIMS) 206Pb/238U zircon and titanite dates, together with titanite geochemistry and temperatures from the lower and middle crust of the Mesozoic Median Batholith, New Zealand, to (1) constrain the timing of Cretaceous arc magmatism in the Separation Point Suite, (2) document the timing of titanite growth in low- and high-strain deformational fabrics, and (3) link spatial and temporal patterns of lithospheric-scale transpressional shear zone development to the Cretaceous arc flare-up event. Our zircon results reveal that Separation Point Suite plutonism lasted from ca. 129 Ma to ca. 110 Ma in the middle crust of eastern and central Fiordland. Deformation during this time was focused into a 20-km-wide, arc-parallel zone of deformation that includes previously unreported segments of a complex shear zone that we term the Grebe shear zone. Early deformation in the Grebe shear zone involved development of low-strain fabrics with shallowly plunging mineral stretching lineations from ca. 129 to 125 Ma. Titanites in these rocks are euhedral, are generally aligned with weak subsolidus fabrics, and give rock-average temperatures ranging from 675 °C to 700 °C. We interpret them as relict magmatic titanites that grew prior to low-strain fabric development. In contrast, deformation from ca. 125 to 116 Ma involved movement along subvertical, mylonitic shear zones with moderately to steeply plunging mineral stretching lineations. Titanites in these shear zones are anhedral grains/aggregates that are aligned within mylonitic fabrics and have rock-average temperatures ranging from ∼610 °C to 700 °C. These titanites are most consistent with (re)crystallization in response to deformation and/or metamorphic reactions during amphibolite-facies metamorphism. At the orogen scale, spatial and temporal patterns indicate that the Separation Point Suite flare-up commenced during low-strain deformation in the middle crust (ca. 129–125 Ma) and peaked during high-strain, transpressional deformation (ca. 125–116 Ma), during which time the magmatic arc axis widened to 70 km or more. We suggest that transpressional deformation during the arc flare-up event was an important process in linking melt storage regions and controlling the distribution and geometry of plutons at mid-crustal levels.  more » « less
Award ID(s):
1650183 1650219 1655152
NSF-PAR ID:
10141608
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Lithosphere
Volume:
11
Issue:
5
ISSN:
1941-8264
Page Range / eLocation ID:
652 to 682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Late Cretaceous arc flare-up event from 90 to 70 in the Transverse Ranges of the Southern California Batholith was temporally and spatially associated with the development of a large contractional shear system that includes discontinuous segments of the Tumamait shear zone (Mt. Pinos), the Alamo Mountain-Piru Creek shear zone, the Black Belt shear zone (Cucamonga terrane), and the Eastern Peninsular Ranges shear zone. The age and kinematics of these shear zones inform the tectonic setting of the continental arc in Southern California during the beginning of the Laramide orogeny and during postulated large-magnitude dextral translations along the margin (the Baja-BC hypothesis). The Mt. Pinos sector of the Southern California Batholith preserves the intra-arc, transpressional Tumamait shear zone and the ductile-to-brittle Sawmill thrust, both of which record Late Cretaceous deformation. The batholith and shear zone are hosted by Mesoproterozoic biotite gneisses and migmatites (1750-1760 Ma), Neoproterozoic biotite granites (660 Ma), Permo-Triassic granitic gneisses and amphibolite (260-250 Ma), and Late Jurassic granites and gneisses (160-140 Ma). Late Cretaceous rocks are variably deformed and include porphyritic granodiorite gneisses and peraluminous granites emplaced at 86 to 70 Ma. Mylonites of the Tumamait shear zone affect all rocks in the area and generally strike NW-SE and dip moderately to the NE and SW. Mineral stretching lineations plunge shallowly to the SE. Mylonitic fabrics are folded into a regional, SE-plunging synform that results in alternating bands of sinistral and dextral shear fabrics. Syn-kinematic titanites from 5 mylonitic samples give a 720-700°C temperature range, and lower-intercept 206Pb/238U dates of 77.0 Ma, 76.8 Ma, 75.1 Ma, 74.2 Ma, and 74.0 Ma. Subsequent folding of the mylonite is linked to N-directed motion on the Sawmill thrust. 40Ar-39Ar thermochronology ages of 67-66 Ma and onlapping Eocene shales indicate Latest Cretaceous activity on the thrust, prior to Eocene arc collapse. Based on the age of the Tumamait shear zone, we speculate that it is related to sinistral deformation observed in the nearby Alamo Mountain-Piru Creek and the Black Belt shear zones. We attribute the younger Sawmill thrust to collision of the Hess oceanic plateau with the Southern California Batholith after 70 Ma. 
    more » « less
  2. null (Ed.)
    Abstract Recovering the time-evolving relationship between arc magmatism and deformation, and the influence of anisotropies (inherited foliations, crustal-scale features, and thermal gradients), is critical for interpreting the location, timing, and geometry of transpressional structures in continental arcs. We investigated these themes of magma-deformation interactions and preexisting anisotropies within a middle- and lower-crustal section of Cretaceous arc crust coinciding with a Paleozoic boundary in central Fiordland, New Zealand. We present new structural mapping and results of Zr-in-titanite thermometry and U-Pb zircon and titanite geochronology from an Early Cretaceous batholith and its host rock. The data reveal how the expression of transpression in the middle and lower crust of a continental magmatic arc evolved during emplacement and crystallization of the ∼2300 km2 lower-crustal Western Fiordland Orthogneiss (WFO) batholith. Two structures within Fiordland’s architecture of transpressional shear zones are identified. The gently dipping Misty shear zone records syn-magmatic oblique-sinistral thrust motion between ca. 123 and ca. 118 Ma, along the lower-crustal WFO Misty Pluton margin. The subhorizontal South Adams Burn thrust records mid-crustal arc-normal shortening between ca. 114 and ca. 111 Ma. Both structures are localized within and reactivate a recently described >10 km-wide Paleozoic crustal boundary, and show that deformation migrated upwards between ca. 118 and ca. 114 Ma. WFO emplacement and crystallization (mainly 118–115 Ma) coincided with elevated (>750 °C) middle- and lower-crustal Zr-in-titanite temperatures and the onset of mid-crustal cooling at 5.9 ± 2.0 °C Ma−1 between ca. 118 and ca. 95 Ma. We suggest that reduced strength contrasts across lower-crustal pluton margins during crystallization caused deformation to migrate upwards into thermally weakened rocks of the mid-crust. The migration was accompanied by partitioning of deformation into domains of arc-normal shortening in Paleozoic metasedimentary rocks and domains that combined shortening and strike-slip deformation in crustal-scale subvertical, transpressional shear zones previously documented in Fiordland. U-Pb titanite dates indicate Carboniferous–Cretaceous (re)crystallization, consistent with reactivation of the inherited boundary. Our results show that spatio-temporal patterns of transpression are influenced by magma emplacement and crystallization and by the thermal structure of a reactivated boundary. 
    more » « less
  3. Abstract. The inception of the Laramide Orogeny in Southern California is marked by a Late Cretaceous arc flare-up in the Southern California Batholith (SCB) that was temporally and spatially associated with syn-plutonic development of a regionally extensive, transpressional shear zone system. This ~200 km-long system is the best analog for the shear zones that extend into the middle crust beneath the major lithotectonic block-bounding faults of the San Andreas Fault system. We focus on the Black Belt Shear Zone, which preserves an ancient brittle-ductile transition (BDT), and is exposed in the SE corner of the San Gabriel lithotectonic block. The mid-crustal Black Belt Shear Zone forms a ~1.5-2 km thick zone of mylonites developed within hornblende and biotite tonalites and diorites. Mylonitic fabrics strike SW and dip moderately to the NW, and kinematic indicators from the Black Belt Shear Zone generally give oblique top-to-SW, sinistral thrust-sense motion (present-day geometry). U-Pb zircon ages of host rock to the Black Belt mylonites demonstrate crystallization at ~86 Ma and metamorphism at ~79 Ma at temperatures ~753 ¡C. Syn-kinematic, metamorphic titanite grains aligned with mylonitic foliation in the Black Belt Shear Zone give an age of ~83 Ma. These data indicate syn-magmatic sinistral-reverse, transpressional deformation. The BDT rocks in the Black Belt Shear Zone are characterized by a ~10 m-thick section of high strain mylonites interlayered with co-planar cataclasite and pseudotachylyte (pst) seams. Microstructural and electron backscatter diffraction (EBSD) analysis shows that the mylonites and cataclasites are mutually overprinted, and pst seams are overprinted by mylonitic fabric development. Pst survivor clasts show the same shear sense as the host mylonite, and this kinematic compatibility demonstrates a continuum between brittle and ductile deformation that is punctuated by high strain rate events resulting in the production of frictional melt. EBSD analysis reveals a decreasing content of hydrous maÞc mineral phases in host mylonite with increasing proximity to pst seams. This suggests that pst was generated by melting of hornblende and/or biotite, implying that coeval development of mid-crustal mylonites and pst does not require anhydrous melting conditions. Rather, the production of pst may liberate water, implying that BDT rock rheology is affected by transient pulses of water inßux and strain rate increases. 
    more » « less
  4. Structural analyses combined with new U-Pb zircon and titanite geochronology show how two Early Cretaceous transpressional shear zones initiated and grew through a nearly complete section of continental arc crust during oblique convergence. Both shear zones reactivated Carboniferous faults that penetrated the upper mantle below Zealandia's Median Batholith but show opposite growth patterns and dissimilar relationships with respect to arc magmatism. The Grebe-Indecision Creek shear zone was magma-starved and first reactivated at ∼136 Ma as an oblique-reverse fault, along which an outboard batholith partially subducted beneath Gondwana. This system nucleated at or above ∼20 km depth and propagated downward at 2–3 mm yr−1, accumulating at least 35–45 km of horizontal (arc-normal) shortening by ∼124 Ma. In contrast, the magma-rich George Sound shear zone first reactivated in the lower crust (∼55 km depth) at ∼124 Ma and grew upward at ∼3 mm yr−1, reaching the upper crust by ∼110 Ma. In this latter system, magmatism influenced shear zone architecture and drove its growth while subduction and oblique convergence ended. As magma entered the roots of the system and began to solidify, deformation was driven out of the lower crust and into the middle crust where the system widened by a factor of three when fold-thrust belts formed on either side of a steep, central transpressional shear zone. This study illustrates how the reactivation of structural weaknesses localizes deformation at all depths in the lithosphere and shows how magma-deformation feedbacks influence shear zone connectivity and built a batholith from the bottom up. 
    more » « less
  5. Abstract

    Structural analyses combined with new U‐Pb zircon and titanite geochronology show how two Early Cretaceous transpressional shear zones initiated and grew through a nearly complete section of continental arc crust during oblique convergence. Both shear zones reactivated Carboniferous faults that penetrated the upper mantle below Zealandia's Median Batholith but show opposite growth patterns and dissimilar relationships with respect to arc magmatism. The Grebe‐Indecision Creek shear zone was magma‐starved and first reactivated at ∼136 Ma as an oblique‐reverse fault, along which an outboard batholith partially subducted beneath Gondwana. This system nucleated at or above ∼20 km depth and propagated downward at 2–3 mm yr−1, accumulating at least 35–45 km of horizontal (arc‐normal) shortening by ∼124 Ma. In contrast, the magma‐rich George Sound shear zone first reactivated in the lower crust (∼55 km depth) at ∼124 Ma and grew upward at ∼3 mm yr−1, reaching the upper crust by ∼110 Ma. In this latter system, magmatism influenced shear zone architecture and drove its growth while subduction and oblique convergence ended. As magma entered the roots of the system and began to solidify, deformation was driven out of the lower crust and into the middle crust where the system widened by a factor of three when fold‐thrust belts formed on either side of a steep, central transpressional shear zone. This study illustrates how the reactivation of structural weaknesses localizes deformation at all depths in the lithosphere and shows how magma‐deformation feedbacks influence shear zone connectivity and built a batholith from the bottom up.

     
    more » « less