In the IoT and smart systems era, the massive amount of data generated from various IoT and smart devices are often sent directly to the cloud infrastructure for processing, analyzing, and storing. While handling this big data, conventional cloud infrastructure encounters many challenges, e.g., scarce bandwidth, high latency, real-time constraints, high power, and privacy issues. The edge-centric computing is transpiring as a synergistic solution to address these issues of cloud computing, by enabling processing/analyzing the data closer to the source of the data or at the network’s edge. This in turn allows real-time and in-situ data analytics and processing, which is imperative for many real-world IoT and smart systems, such as smart cars. Since the edge computing is still in its infancy, innovative solutions, models, and techniques are needed to support real-time and in-situ data processing and analysis of edge computing platforms. In this research work, we introduce a novel, unique, and efficient FPGA-HLS-based hardware accelerator for PCA+SVM model for real-time processing and analysis on edge computing platforms. This is inspired by our previous work on PCA+SVM models for edge computing applications. It was demonstrated that the amalgamation of principal component analysis (PCA) and support vector machines (SVM) leads to high classification accuracy in many fields. Also, machine learning techniques, such as SVM, can be utilized for many edge tasks, e.g. anomaly detection, health monitoring, etc.; and dimensionality reduction techniques, such as PCA, are often used to reduce the data size, which in turn vital for memory-constrained edge devices/platforms. Furthermore, our previous works demonstrated that FPGA’s many traits, including parallel processing abilities, low latency, and stable throughput despite the workload, make FPGAs suitable for real-time processing of edge computing applications/platforms. Our proposed FPGA-HLS-based PCA+SVM hardware IP achieves up to 254x speedup compared to its embedded software counterpart, while maintaining small area and low power requirements of edge computing applications. Our experimental results show great potential in utilizing FPGA-based architectures to support real-time processing on edge computing applications.
more »
« less
Resource-Efficient Computing in Wearable Systems
We propose two optimization techniques to minimize memory usage and computation while meeting system timing constraints for real-time classification in wearable systems. Our method derives a hierarchical classifier structure for Support Vector Machine (SVM) in order to reduce the amount of computations, based on the probability distribution of output classes occurrences. Also, we propose a memory optimization technique based on SVM parameters, which results in storing fewer support vectors and as a result requiring less memory. To demonstrate the efficiency of our proposed techniques, we performed an activity recognition experiment and were able to save up to 35% and 56% in memory storage when classifying 14 and 6 different activities, respectively. In addition, we demonstrated that there is a trade-off between accuracy of classification and memory savings, which can be controlled based on application requirements.
more »
« less
- Award ID(s):
- 1750679
- PAR ID:
- 10141794
- Date Published:
- Journal Name:
- 2019 IEEE International Conference on Smart Computing (SMARTCOMP 2019)
- Page Range / eLocation ID:
- 150 to 155
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Support Vector Machine (SVM) is originally proposed as a binary classification model, and it has already achieved great success in different applications. In reality, it is more often to solve a problem which has more than two classes. So, it is natural to extend SVM to a multi-class classifier. There have been many works proposed to construct a multi-class classifier based on binary SVM, such as one versus all strategy, one versus one strategy and Weston's multi-class SVM. One versus all strategy and one versus one strategy split the multi-class problem to multiple binary classification subproblems, and we need to train multiple binary classifiers. Weston's multi-class SVM is formed by ensuring risk constraints and imposing a specific regularization, like Frobenius norm. It is not derived by maximizing the margin between hyperplane and training data which is the motivation in SVM. In this paper, we propose a multi-class SVM model from the perspective of maximizing margin between training points and hyperplane, and analyze the relation between our model and other related methods. In the experiment, it shows that our model can get better or compared results when comparing with other related methods.more » « less
-
Quantitative analysis of brain disorders such as Autism Spectrum Disorder (ASD) is an ongoing field of research. Machine learning and deep learning techniques have been playing an important role in automating the diagnosis of brain disorders by extracting discriminative features from the brain data. In this study, we propose a model called Auto-ASD-Network in order to classify subjects with Autism disorder from healthy subjects using only fMRI data. Our model consists of a multilayer perceptron (MLP) with two hidden layers. We use an algorithm called SMOTE for performing data augmentation in order to generate artificial data and avoid overfitting, which helps increase the classification accuracy. We further investigate the discriminative power of features extracted using MLP by feeding them to an SVM classifier. In order to optimize the hyperparameters of SVM, we use a technique called Auto Tune Models (ATM) which searches over the hyperparameter space to find the best values of SVM hyperparameters. Our model achieves more than 70% classification accuracy for 4 fMRI datasets with the highest accuracy of 80%. It improves the performance of SVM by 26%, the stand-alone MLP by 16% and the state of the art method in ASD classification by 14%. The implemented code will be available as GPL license on GitHub portal of our lab (https://github.com/PCDS).more » « less
-
null (Ed.)Predicting coarse-grain variations in workload behavior during execution is essential for dynamic resource optimization of processor systems. Researchers have proposed various methods to first classify workloads into phases and then learn their long-term phase behavior to predict and anticipate phase changes. Early studies on phase prediction proposed table-based phase predictors. More recently, simple learning-based techniques such as decision trees have been explored. However, more recent advances in machine learning have not been applied to phase prediction so far. Furthermore, existing phase predictors have been studied only in connection with specific phase classifiers even though there is a wide range of classification methods. Early work in phase classification proposed various clustering methods that required access to source code. Some later studies used performance monitoring counters, but they only evaluated classifiers for specific contexts such as thermal modeling. In this work, we perform a comprehensive study of source-oblivious phase classification and prediction methods using hardware counters. We adapt classification techniques that were used with different inputs in the past and compare them to state-of-the-art hardware counter based classifiers. We further evaluate the accuracy of various phase predictors when coupled with different phase classifiers and evaluate a range of advanced machine learning techniques, including SVMs and LSTMs for workload phase prediction. We apply classification and prediction approaches to SPEC workloads running on an Intel Core-i9 platform. Results show that a two-level kmeans clustering combined with SVM-based phase change prediction provides the best tradeoff between accuracy and long-term stability. Additionally, the SVM predictor reduces the average prediction error by 80% when compared to a table-based predictor.more » « less
-
Sparse support vector machine (SVM) is a popular classification technique that can simultaneously learn a small set of the most interpretable features and identify the support vectors. It has achieved great successes in many real-world applications. However, for large-scale problems involving a huge number of samples and extremely high-dimensional features, solving sparse SVMs remains challenging. By noting that sparse SVMs induce sparsities in both feature and sample spaces, we propose a novel approach, which is based on accurate estimations of the primal and dual optima of sparse SVMs, to simultaneously identify the features and samples that are guaranteed to be irrelevant to the outputs. Thus, we can remove the identified inactive samples and features from the training phase, leading to substantial savings in both the memory usage and computational cost without sacrificing accuracy. To the best of our knowledge, the proposed method is the first static feature and sample reduction method for sparse SVMs. Experiments on both synthetic and real datasets (e.g., the kddb dataset with about 20 million samples and 30 million features) demonstrate that our approach significantly outperforms state-of-the-art methods and the speedup gained by our approach can be orders of magnitude.more » « less
An official website of the United States government

