Additive manufacturing (AM) as a disruptive technique has offered great potential to design and fabricate many metallic components for aerospace, medical, nuclear, and energy applications where parts have complex geometry. However, a limited number of materials suitable for the AM process is one of the shortcomings of this technique, in particular laser AM of copper (Cu) is challenging due to its high thermal conductivity and optical reflectivity, which requires higher heat input to melt powders. Fabrication of composites using AM is also very challenging and not easily achievable using the current powder bed technologies. Here, the feasibility to fabricate pure copper and copper-carbon nanotube (Cu-CNT) composites was investigated using laser powder bed fusion additive manufacturing (LPBF-AM), and 10 × 10 × 10 mm3 cubes of Cu and Cu-CNTs were made by applying a Design of Experiment (DoE) varying three parameters: laser power, laser speed, and hatch spacing at three levels. For both Cu and Cu-CNT samples, relative density above 90% and 80% were achieved, respectively. Density measurement was carried out three times for each sample, and the error was found to be less than 0.1%. Roughness measurement was performed on a 5 mm length of the sample to obtain statistically significant results. As-built Cu showed average surface roughness (Ra) below 20 µm; however, the surface of AM Cu-CNT samples showed roughness values as large as 1 mm. Due to its porous structure, the as-built Cu showed thermal conductivity of ~108 W/m·K and electrical conductivity of ~20% IACS (International Annealed Copper Standard) at room temperature, ~70% and ~80% lower than those of conventionally fabricated bulk Cu. Thermal conductivity and electrical conductivity were ~85 W/m·K and ~10% IACS for as-built Cu-CNT composites at room temperature. As-built Cu-CNTs showed higher thermal conductivity as compared to as-built Cu at a temperature range from 373 K to 873 K. Because of their large surface area, light weight, and large energy absorbing behavior, porous Cu and Cu-CNT materials can be used in electrodes, catalysts and their carriers, capacitors, heat exchangers, and heat and impact absorption.
more »
« less
Laser-induced atmospheric Cu x O formation on copper surface with enhanced electrochemical performance for non-enzymatic glucose sensing
Copper oxide nanostructures are widely used for various applications due to their unique optical and electrical properties. In this work, we demonstrate an atmospheric laser-induced oxidation technique for the fabrication of highly electrochemically active copper oxide hierarchical micro/nano structures on copper surfaces to achieve highly sensitive non-enzymatic glucose sensing performance. The effect of laser processing power on the composition, crystallinity, microstructure, wettability, and color of the laser-induced oxide on copper (LIO-Cu) surface was systematically studied using scanning electron microscopy (SEM), grazing incidence X-ray diffraction (GI-XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), EDX-mapping, water contact angle measurements, and optical microscopy. Results of these investigations showed a remarkable increase in copper oxide composition by increasing the laser processing power. The pore size distribution and surface area of the pristine and LIO-Cu sample estimated by N 2 adsorption–desorption data showed a developed mesoporous LIO-Cu structure. The size of the generated nano-oxides, crystallinity, and electroactivity of the LIO-Cu were observed to be adjustable by the laser processing power. The electrocatalytic activity of LIO-Cu surfaces was studied by means of cyclic voltammetry (CV) within a potential window of −0.8 to +0.8 V and chronoamperometry in an applied optimized potential of +0.6 V, in 0.1 M NaOH solution and phosphate buffer solution (PBS), respectively. LIO-Cu surfaces with optimized laser processing powers exhibited a sensitivity of 6950 μA mM −1 cm −2 within a wide linear range from 0.01 to 5 mM, with exceptional specificity and response time (<3 seconds). The sensors also showed excellent response stability over a course of 50 days that was originated from the binder-free robust electroactive film fabricated directly onto the copper surface. The demonstrated one-step LIO processing onto commercial metal films, can potentially be applied for tuneable and scalable roll-to-roll fabrication of a wide range of high surface area metal oxide micro/nano structures for non-enzymatic biosensing and electrochemical applications.
more »
« less
- Award ID(s):
- 1809520
- PAR ID:
- 10341591
- Date Published:
- Journal Name:
- Journal of Materials Chemistry C
- Volume:
- 9
- Issue:
- 42
- ISSN:
- 2050-7526
- Page Range / eLocation ID:
- 14997 to 15010
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Micro- and nanoporous materials have gathered attention from the scientific community due to their size dependent properties, including but not limited to high specific surface area, surface diffusivity, bulk diffusivity and permeability, catalytic activity, and distinct optical properties. In this work, spherical nanoporous copper (np-Cu) powders, due to their nanosized porosity and low Cu2O content, show hemispherical total reflectance of 20% which is significantly lower than its bulk counterpart value for solid or molten copper of approximately 97% at wavelengths of most commercial Laser Powder Bed Fusion (L-PBF) commercial machines. The low-reflectance of np-Cu powders has the potential to be used in L-PBF to improve laser absorption, volumetric energy efficiency, and throughput of this additive manufacturing process. In fact, a prepared mixture of solid Cu powders containing only 5 wt.% of np-Cu powders reflects 34.8 % less than pure copper powders as shown in this paper. Np-Cu powders are fabricated via chemical dealloying of gas atomized CuAl alloy in a robust and scalable approach, and then mixed with pure copper powders to prepare hybrid feedstocks. Under this framework, the crucial role of deglomeration strategies to achieve homogeneity and flowability of np-Cu/Cu hybrid mixtures are evaluated via particle imaging to determine agglomerate size and composition with an eye at obtaining a high-quality print in L-PBF. In np-Cu powders fabrication, washing them in low-surface tension fluids upholds the highest degree of deglomeration in their fabrication process, and for hybrid feedstocks preparation, pre-mixing Cu and CuAl prior to dealloying yields the best homogeneity results with smallest size of agglomerates and good flowability.more » « less
-
Abstract Fabrication of micro- and nanoscale electronic components has become increasingly demanding due to device and interconnect scaling combined with advanced packaging and assembly for electronic, aerospace, and medical applications. Recent advances in additive manufacturing have made it possible to fabricate microscale, 3D interconnect structures but heat transfer during the fabrication process is one of the most important phenomena influencing the reliable manufacturing of these interconnect structures. In this study, optical absorption and scattering by three-dimensional (3D) nanoparticle packings are investigated to gain insight into micro/nano heat transport within the nanoparticles. Because drying of colloidal solutions creates different configurations of nanoparticles, the plasmonic coupling in three different copper nanoparticle packing configurations was investigated: simple cubic (SC), face-centered cubic (FCC), and hexagonal close packing (HCP). Single-scatter albedo (ω) was analyzed as a function of nanoparticle size, packing density, and configuration to assess effect for thermo-optical properties and plasmonic coupling of the Cu nanoparticles within the nanoparticle packings. This analysis provides insight into plasmonically enhanced absorption in copper nanoparticle particles and its consequences for laser heating of nanoparticle assemblies.more » « less
-
Transition metals have been explored extensively for non-enzymatic electrochemical detection of glucose. However, to enable glucose oxidation, the majority of reports require highly alkaline electrolytes which can be damaging to the sensors and hazardous to handle. In this work, we developed a non-enzymatic sensor for detection of glucose in near-neutral solution based on copper-nickel electrodes which are electrochemically modified in phosphate-buffered saline (PBS). Nickel and copper were deposited using chronopotentiometry, followed by a two-step annealing process in air (Step 1: at room temperature and Step 2: at 150 °C) and electrochemical stabilization in PBS. Morphology and chemical composition of the electrodes were characterized using scanning electron microscopy and energy-dispersive X-ray spectroscopy. Cyclic voltammetry was used to measure oxidation reaction of glucose in sodium sulfate (100 mM, pH 6.4). The PBS-Cu-Ni working electrodes enabled detection of glucose with a limit of detection (LOD) of 4.2 nM, a dynamic response from 5 nM to 20 mM, and sensitivity of 5.47 ± 0.45 μA cm−2/log10(mole.L−1) at an applied potential of 0.2 V. In addition to the ultralow LOD, the sensors are selective toward glucose in the presence of physiologically relevant concentrations of ascorbic acid and uric acid spiked in artificial saliva. The optimized PBS-Cu-Ni electrodes demonstrate better stability after seven days storage in ambient compared to the Cu-Ni electrodes without PBS treatment.more » « less
-
Chiral surfaces are of growing interest for enantioselective adsorption and reactions. While metal surfaces can be prepared with a wide range of chiral surface orientations, chiral oxide surface preparation is much more challenging. Herein, we demonstrate that the chirality of a metal surface can be used to direct the homochiral growth of a thin film chiral oxide. Specifically, we study the chiral ‘29’ copper oxide, formed by oxidizing a Cu(111) single crystal at 650 K. Surface structure spread single crystals which expose a continuous distribution of surface orientations as a function of position on the crystal, enabled us to systematically investigate the mechanism of chirality transfer between metal and oxide with high-resolution scanning tunneling microscopy. We discovered that the local underlying metal facet directs the orientation and chirality of the oxide overlayer. Importantly, single homochiral domains of the ‘29’ oxide were found in areas where the Cu step edges that templated growth were ≤20 nm apart. We used this information to select a Cu(239 241 246) oriented single crystal and demonstrate that a ‘29’ oxide surface can be grown in homochiral domains by templating from the subtle chirality of the underlying metal crystal. This work demonstrates how a small degree of chirality induced by very slight misorientation of a metal surface (~1 sites/ 20 nm2) can be amplified by oxidation to yield a homochiral oxide with a regular array of chiral oxide pores (~75 sites/ 20 nm2). This offers a general approach for making chiral oxide surfaces via oxidation of an appropriately miscut metal surface.more » « less
An official website of the United States government

