skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sign-Rank Can Increase Under Intersection
The communication class UPP^{cc} is a communication analog of the Turing Machine complexity class PP. It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f, let f wedge f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP^{cc}(f)= O(log n), and UPP^{cc}(f wedge f) = Theta(log^2 n). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP^{cc}, the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n^{Omega(log n)}. This matches an upper bound of (Klivans, O'Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time.  more » « less
Award ID(s):
1845125
PAR ID:
10142336
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Leibniz international proceedings in informatics
Volume:
132
ISSN:
1868-8969
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The communication class UPP cc is a communication analog of the Turing Machine complexity class PP . It is characterized by a matrix-analytic complexity measure called sign-rank (also called dimension complexity), and is essentially the most powerful communication class against which we know how to prove lower bounds. For a communication problem f , let f ∧ f denote the function that evaluates f on two disjoint inputs and outputs the AND of the results. We exhibit a communication problem f with UPP cc ( f ) = O (log n ), and UPP cc ( f ∧ f ) = Θ (log 2 n ). This is the first result showing that UPP communication complexity can increase by more than a constant factor under intersection. We view this as a first step toward showing that UPP cc , the class of problems with polylogarithmic-cost UPP communication protocols, is not closed under intersection. Our result shows that the function class consisting of intersections of two majorities on n bits has dimension complexity n Omega Ω(log n ) . This matches an upper bound of (Klivans, O’Donnell, and Servedio, FOCS 2002), who used it to give a quasipolynomial time algorithm for PAC learning intersections of polylogarithmically many majorities. Hence, fundamentally new techniques will be needed to learn this class of functions in polynomial time. 
    more » « less
  2. Aggarwal, Divesh (Ed.)
    We study the problem of function inversion with preprocessing where, given a function f : [N] → [N] and a point y in its image, the goal is to find an x such that f(x) = y using at most T oracle queries to f and S bits of preprocessed advice that depend on f. The seminal work of Corrigan-Gibbs and Kogan [TCC 2019] initiated a line of research that shows many exciting connections between the non-adaptive setting of this problem and other areas of theoretical computer science. Specifically, they introduced a very weak class of algorithms (strongly non-adaptive) where the points queried by the oracle depend only on the inversion point y, and are independent of the answers to the previous queries and the S bits of advice. They showed that proving even mild lower bounds on strongly non-adaptive algorithms for function inversion would imply a breakthrough result in circuit complexity. We prove that every strongly non-adaptive algorithm for function inversion (and even for its special case of permutation inversion) must have ST = Ω(N log (N) log (T)). This gives the first improvement to the long-standing lower bound of ST = Ω(N log N) due to Yao [STOC 90]. As a corollary, we conclude the first separation between strongly non-adaptive and adaptive algorithms for permutation inversion, where the adaptive algorithm by Hellman [TOIT 80] achieves the trade-off ST = O(N log N). Additionally, we show equivalence between lower bounds for strongly non-adaptive data structures and the one-way communication complexity of certain partial functions. As an example, we recover our lower bound on function inversion in the communication complexity framework. 
    more » « less
  3. Let f: {0, 1}n → {0, 1} be a boolean function, and let f∧(x, y) = f(x ∧ y) denote the AND-function of f, where x ∧ y denotes bit-wise AND. We study the deterministic communication complexity of f∧ and show that, up to a logn factor, it is bounded by a polynomial in the logarithm of the real rank of the communication matrix of f∧. This comes within a logn factor of establishing the log-rank conjecture for AND-functions with no assumptions on f. Our result stands in contrast with previous results on special cases of the log-rank conjecture, which needed significant restrictions on f such as monotonicity or low F2-degree. Our techniques can also be used to prove (within a logn factor) a lifting theorem for AND-functions, stating that the deterministic communication complexity of f∧ is polynomially related to the AND-decision tree complexity of f. The results rely on a new structural result regarding boolean functions f: {0, 1}n → {0, 1} with a sparse polynomial representation, which may be of independent interest. We show that if the polynomial computing f has few monomials then the set system of the monomials has a small hitting set, of size poly-logarithmic in its sparsity. We also establish extensions of this result to multi-linear polynomials f: {0, 1}n → with a larger range. 
    more » « less
  4. Given a function f on (F_2_^n, we study the following problem. What is the largest affine subspace U such that when restricted to U, all the non-trivial Fourier coefficients of f are very small? For the natural class of bounded Fourier degree d functions f : (F_2)^n → [−1, 1], we show that there exists an affine subspace of dimension at least ˜Ω (n^(1/d!) k^(−2)), wherein all of f ’s nontrivial Fourier coefficients become smaller than 2^(−k) . To complement this result, we show the existence of degree d functions with coefficients larger than 2^(−d log n) when restricted to any affine subspace of dimension larger than Ω(dn^(1/(d−1))). In addition, we give explicit examples of functions with analogous but weaker properties. Along the way, we provide multiple characterizations of the Fourier coefficients of functions restricted to subspaces of (F_2)^n that may be useful in other contexts. Finally, we highlight applications and connections of our results to parity kill number and affine dispersers. 
    more » « less
  5. Tauman Kalai, Yael (Ed.)
    We introduce and study the communication complexity of computing the inner product of two vectors, where the input is restricted w.r.t. a norm N on the space ℝⁿ. Here, Alice and Bob hold two vectors v,u such that ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1, where N^* is the dual norm. The goal is to compute their inner product ⟨v,u⟩ up to an ε additive term. The problem is denoted by IP_N, and generalizes important previously studied problems, such as: (1) Computing the expectation 𝔼_{x∼𝒟}[f(x)] when Alice holds 𝒟 and Bob holds f is equivalent to IP_{𝓁₁}. (2) Computing v^TAv where Alice has a symmetric matrix with bounded operator norm (denoted S_∞) and Bob has a vector v where ‖v‖₂ = 1. This problem is complete for quantum communication complexity and is equivalent to IP_{S_∞}. We systematically study IP_N, showing the following results, near tight in most cases: 1) For any symmetric norm N, given ‖v‖_N ≤ 1 and ‖u‖_{N^*} ≤ 1 there is a randomized protocol using 𝒪̃(ε^{-6} log n) bits of communication that returns a value in ⟨u,v⟩±ε with probability 2/3 - we will denote this by ℛ_{ε,1/3}(IP_N) ≤ 𝒪̃(ε^{-6} log n). In a special case where N = 𝓁_p and N^* = 𝓁_q for p^{-1} + q^{-1} = 1, we obtain an improved bound ℛ_{ε,1/3}(IP_{𝓁_p}) ≤ 𝒪(ε^{-2} log n), nearly matching the lower bound ℛ_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(min(n, ε^{-2})). 2) One way communication complexity ℛ^{→}_{ε,δ}(IP_{𝓁_p}) ≤ 𝒪(ε^{-max(2,p)}⋅ log n/ε), and a nearly matching lower bound ℛ^{→}_{ε, 1/3}(IP_{𝓁_p}) ≥ Ω(ε^{-max(2,p)}) for ε^{-max(2,p)} ≪ n. 3) One way communication complexity ℛ^{→}_{ε,δ}(N) for a symmetric norm N is governed by the distortion of the embedding 𝓁_∞^k into N. Specifically, while a small distortion embedding easily implies a lower bound Ω(k), we show that, conversely, non-existence of such an embedding implies protocol with communication k^𝒪(log log k) log² n. 4) For arbitrary origin symmetric convex polytope P, we show ℛ_{ε,1/3}(IP_{N}) ≤ 𝒪(ε^{-2} log xc(P)), where N is the unique norm for which P is a unit ball, and xc(P) is the extension complexity of P (i.e. the smallest number of inequalities describing some polytope P' s.t. P is projection of P'). 
    more » « less