skip to main content


Title: Evolution of the gekkotan adhesive system: Does digit anatomy point to one or more origins?
Synopsis Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylo- genetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co- occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.  more » « less
Award ID(s):
1657662
NSF-PAR ID:
10142418
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and comparative biology
Volume:
59
ISSN:
1540-7063
Page Range / eLocation ID:
131–147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansor formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards. 
    more » « less
  2. Synopsis

    Adhesive toe pads have evolved numerous times over lizard evolutionary history, most notably in geckos. Despite significant variation in adult toe pad morphology across independent origins of toe pads, early developmental patterns of toe pad morphogenesis are similar among distantly related species. In these distant phylogenetic comparisons, toe pad variation is achieved during the later stages of development. We aimed to understand how toe pad variation is generated among species sharing a single evolutionary origin of toe pads (house geckos—Hemidactylus). We investigated toe pad functional variation and developmental patterns in three species of Hemidactylus, ranging from highly scansorial (H. platyurus), to less scansorial (H. turcicus), to fully terrestrial (H. imbricatus). We found that H. platyurus generated significantly greater frictional adhesive force and exhibited much larger toe pad area relative to the other two species. Furthermore, differences in the offset of toe pad extension phase during embryonic development results in the variable morphologies seen in adults. Taken together, we demonstrate how morphological variation is generated in a complex structure during development and how that variation relates in important functional outcomes.

     
    more » « less
  3. Gekkota (geckos and pygopodids) is a clade thought to have originated in the Early Cretaceous and that today exhibits one of the most remarkable scansorial capabilities among lizards. Little information is available regarding the origin of scansoriality, which subsequently became widespread and diverse in terms of ecomorphology in this clade. An undescribed amber fossil (MCZ R–190835) from mid-Cretaceous outcrops of the north of Myanmar dated at 99 Ma, previously assigned to stem Gekkota, preserves carpal, metacarpal and phalangeal bones, as well as supplementary climbing structures, such as adhesive pads and paraphalangeal elements. This fossil documents the presence of highly specialized adaptive structures. Here, we analyze in detail the manus of the putative stem Gekkota. We use morphological comparisons in the context of extant squamates, to produce a detailed descriptive analysis and a linear discriminant analysis (LDA) based on 32 skeletal variables of the manus. The comparative sample includes members of 15 extant squamate families (Agamidae, Dactyloidae, Iguanidae, Leiosauridae, Liolaemidae, Polychrotidae, Tropiduridae, Diplodactylidae, Eublepharidae, Gekkonidae, Phyllodactylidae, Sphaerodactylidae, Gymnophthalmidae, Teiidae, and Scincidae). Although the fossil manus is qualitatively more similar to that of members of Gekkota, the LDA analysis places it in a morphozone shared by Gekkota and Scincomorpha. This result is particularly interesting, given that despite the presence of paraphalangeal structures had only been reported in extant geckos of the families Gekkonidae and Phyllodactylidae, the usage of an adhesive subdigital system to climb originated independently in Gekkota, Scincidae, and Dactyloidae. 
    more » « less
  4. Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko ( Correlophus ciliatus ) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C . ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C . ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads. 
    more » « less
  5. Abstract

    The remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g., self-cleaning, controlled releasability, reversibility) and adhesive performance of the gekkotan adhesive system have motivated researchers to design and fabricate gecko-inspired synthetic adhesives of various materials and properties. However, many challenges remain in our attempts to replicate the properties and performance of this complex, hierarchical fibrillar adhesive system, stemming from fundamental, but unanswered, questions about how fibrillar adhesion operates. Such questions involve the role of fibril morphology in adhesive performance and how the gekkotan adhesive apparatus is utilized in nature. Similar fibrillar adhesive systems have, however, evolved independently in two other lineages of lizards (anoles and skinks) and potentially provide alternate avenues for addressing these fundamental questions. Anoles are the most promising group because they have been the subject of intensive ecological and evolutionary study for several decades, are highly speciose, and indeed are advocated as squamate model organisms. Surprisingly, however, comparatively little is known about the morphology, performance, and properties of their convergently-evolved adhesive arrays. Although many researchers consider the performance of the adhesive system of Anolis lizards to be less accomplished than its gekkotan counterpart, we argue here that Anolis lizards are prime candidates for exploring the fundamentals of fibrillar adhesion. Studying the less complex morphology of the anoline adhesive system has the potential to enhance our understanding of fibril morphology and its relationship to the multifunctional performance of fibrillar adhesive systems. Furthermore, the abundance of existing data on the ecology and evolution of anoles provides an excellent framework for testing hypotheses about the influence of habitat microstructure on the performance, behavior, and evolution of lizards with subdigital adhesive pads.

     
    more » « less