skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Optimal Design of Wall-to-Wall Heat Transport
We consider the problem of optimizing heat transport through an incompress- ible fluid layer. Modeling passive scalar transport by advection-diffusion, we maximize the mean rate of total transport by a divergence-free velocity field. Subject to various boundary conditions and intensity constraints, we prove that the maximal rate of transport scales linearly in the r.m.s. kinetic energy and, up to possible logarithmic corrections, as the one-third power of the mean enstro- phy in the advective regime. This makes rigorous a previous prediction on the near optimality of convection rolls for energy-constrained transport. On the other hand, optimal designs for enstrophy-constrained transport are significantly more difficult to describe: we introduce a “branching” flow design with an unbounded number of degrees of freedom and prove it achieves nearly optimal transport. The main technical tool behind these results is a variational principle for evalu- ating the transport of candidate designs. The principle admits dual formulations for bounding transport from above and below. While the upper bound is closely related to the “background method,” the lower bound reveals a connection be- tween the optimal design problems considered herein and other apparently re- lated model problems from mathematical materials science. These connections serve to motivate designs.  more » « less
Award ID(s):
1813003
PAR ID:
10142600
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications on pure and applied mathematics
Volume:
72
ISSN:
0010-3640
Page Range / eLocation ID:
2385–2448
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by the search for sharp bounds on turbulent heat transfer as well as the design of optimal heat exchangers, we consider incompressible flows that most efficiently cool an internally heated disc. Heat enters via a distributed source, is passively advected and diffused, and exits through the boundary at a fixed temperature. We seek an advecting flow to optimize this exchange. Previous work on energy-constrained cooling with a constant source has conjectured that global optimizers should resemble convection rolls; we prove one-sided bounds on energy-constrained cooling corresponding to, but not resolving, this conjecture. In the case of an enstrophy constraint, our results are more complete: we construct a family of self-similar, tree-like ‘branching flows’ whose cooling we prove is within a logarithm of globally optimal. These results hold for general space- and time-dependent source–sink distributions that add more heat than they remove. Our main technical tool is a non-local Dirichlet-like variational principle for bounding solutions of the inhomogeneous advection–diffusion equation with a divergence-free velocity. This article is part of the theme issue ‘Mathematical problems in physical fluid dynamics (part 1)’. 
    more » « less
  2. Gradient ascent methods are developed to compute incompressible flows that maximize heat transport between two isothermal no-slip parallel walls. Parameterizing the magnitude of the velocity fields by a Péclet number $Pe$ proportional to their root-mean-square rate of strain, the schemes are applied to compute two-dimensional flows optimizing convective enhancement of diffusive heat transfer, i.e. the Nusselt number $Nu$ up to $$Pe\approx 10^{5}$$ . The resulting transport exhibits a change of scaling from $$Nu-1\sim Pe^{2}$$ for $Pe<10$ in the linear regime to $$Nu\sim Pe^{0.54}$$ for $$Pe>10^{3}$$ . Optimal fields are observed to be approximately separable, i.e. products of functions of the wall-parallel and wall-normal coordinates. Analysis employing a separable ansatz yields a conditional upper bound $${\lesssim}Pe^{6/11}=Pe^{0.\overline{54}}$$ as $$Pe\rightarrow \infty$$ similar to the computationally achieved scaling. Implications for heat transfer in buoyancy-driven Rayleigh–Bénard convection are discussed. 
    more » « less
  3. We study Mean Field stochastic control problems where the cost function and the state dynamics depend upon the joint distribution of the controlled state and the control process. We prove suitable versions of the Pontryagin stochastic maximum principle, both in necessary and in sufficient form, which extend the known conditions to this general framework. Furthermore, we suggest a variational approach to study a weak formulation of these control problems. We show a natural connection between this weak formulation and optimal transport on path space, which inspires a novel discretization scheme. 
    more » « less
  4. null (Ed.)
    Abstract Optimal transport maps and plans between two absolutely continuous measures $$\mu$$ and $$\nu$$ can be approximated by solving semidiscrete or fully discrete optimal transport problems. These two problems ensue from approximating $$\mu$$ or both $$\mu$$ and $$\nu$$ by Dirac measures. Extending an idea from Gigli (2011, On Hölder continuity-in-time of the optimal transport map towards measures along a curve. Proc. Edinb. Math. Soc. (2), 54, 401–409), we characterize how transport plans change under the perturbation of both $$\mu$$ and $$\nu$$. We apply this insight to prove error estimates for semidiscrete and fully discrete algorithms in terms of errors solely arising from approximating measures. We obtain weighted $L^2$ error estimates for both types of algorithms with a convergence rate $$O(h^{1/2})$$. This coincides with the rate in Theorem 5.4 in Berman (2018, Convergence rates for discretized Monge–Ampère equations and quantitative stability of optimal transport. Preprint available at arXiv:1803.00785) for semidiscrete methods, but the error notion is different. 
    more » « less
  5. We propose and analyze batch greedy heuristics for cardinality constrained maximization of non-submodular non-decreasing set functions. We consider the standard greedy paradigm, along with its distributed greedy and stochastic greedy variants. Our theoretical guarantees are characterized by the combination of submodularity and supermodularity ratios. We argue how these parameters define tight modular bounds based on incremental gains, and provide a novel reinterpretation of the classical greedy algorithm using the minorize maximize (MM) principle. Based on that analogy, we propose a new class of methods exploiting any plausible modular bound. In the context of optimal experimental design for linear Bayesian inverse problems, we bound the submodularity and supermodularity ratios when the underlying objective is based on mutual information. We also develop novel modular bounds for the mutual information in this setting, and describe certain connections to polyhedral combinatorics. We discuss how algorithms using these modular bounds relate to established statistical notions such as leverage scores and to more recent efforts such as volume sampling. We demonstrate our theoretical findings on synthetic problems and on a real-world climate monitoring example. 
    more » « less