ABSTRACT We report single-shot transient absorption (SSTA) measurements of an organic film of 3,3’-Diethyloxatricarbocyanine iodide (DOTCI). In SSTA, the pump-probe time delay is spatially encoded by using a tilted pump pulse. Translation of the sample during SSTA measurements averages over any spatial heterogeneity in the film. We demonstrate that exciton dynamics measured with the single-shot technique agrees with traditional transient absorption measurements of the same film. A signal-to-noise ratio of ∼40 is achieved in 10 s. The ability to measure exciton dynamics in organic films will enable future SSTA measurements of exciton dynamics during the molecular aggregation events that result in film formation.
more »
« less
Broadband single-shot transient absorption spectroscopy
The duration of transient absorption spectroscopy measurements typically limits the types of systems for which the excited state dynamics can be measured. We present a single-shot transient absorption (SSTA) instrument with a spatially encoded 60 ps time delay range and a 100 nm spectral range that is capable of acquiring a transient spectrum in 20 s. We describe methods to spatially overlap the flat-top pump and probe beams at the sample plane, calibrate the spatially encoded time delay, and correct for non-uniform excitation density. SSTA measurements of organic materials in solution and film demonstrate this technique.
more »
« less
- Award ID(s):
- 1752129
- PAR ID:
- 10142715
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 28
- Issue:
- 8
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 11339
- Size(s):
- Article No. 11339
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study aimed to investigate the effects of thermal annealing on a film of squaraine (SQ) molecules in a polymethyl methacrylate (PMMA) matrix. Molecular aggregation is inferred from in situ absorption measurements, and excited state dynamics are measured using a spatially encoded transient absorption (TA) spectroscopy. TA spectra were well-replicated using a kinetic model that evolves as a function of annealing time and extent of aggregation. While linear absorbance spectra indicate that the SQ molecules are primarily uncoupled or weakly-coupled when initially deposited in a PMMA matrix, the kinetic model shows that some pi-stacked aggregates are already present. Excitons are funnelled by energy transfer to these aggregates in just a few picoseconds. The amount of pi-stacked aggregates increases during thermal annealing, further increasing the population of excitons that end up in these aggregates.more » « less
-
We report the excited-state behavior of a structurally simple bis -sulfoxide complex, cis -S,S-[Ru(bpy) 2 (dmso) 2 ] 2+ , as investigated by femtosecond pump–probe spectroscopy. The results reveal that a single photon prompts phototriggered isomerization of one or both dmso ligands to yield a mixture of cis -S,O-[Ru(bpy) 2 (dmso) 2 ] 2+ and cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ . The quantum yields of isomerization of each product and relative product distribution are dependent upon the excitation wavelength, with longer wavelengths favoring the double isomerization product, cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ . Transient absorption measurements on cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ do not reveal an excited-state isomerization pathway to produce either the S,O or S,S isomers. Femtosecond pulse shaping experiments reveal no change in the product distribution. Pump–repump–probe transient absorption spectroscopy of cis -S,S-[Ru(bpy) 2 (dmso) 2 ] 2+ shows that a pump–repump time delay of 3 ps dramatically alters the S,O : O,O product ratio; pump–repump–probe transient absorption spectroscopy of cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ with a time delay of 3 ps uncovers an excited-state isomerization pathway to produce the S,O isomer. In conjunction with low-temperature steady-state emission spectroscopy, these results are interpreted in the context of an excited-state bifurcating pathway, in which the isomerization product distribution is determined not by thermodynamics, but rather as a dynamics driven reaction.more » « less
-
Excitation transfer across the interfaces between graphene, perylenetetracarboxylic diimide (PTCDI), and titanyl phthalocyanine (TiOPc) was studied by using transient absorption and photoluminescence spectroscopy. Both photoluminescence quenching and transient absorption measurements confirm the presence of a type-II interface between PTCDI and TiOPc. While the graphene/PTCDI interface is expected to exhibit type-I behavior, transient absorption measurements indicate that only electrons transfer from PTCDI to graphene, with no evidence of hole transfer. Density functional theory calculations reveal significant ground-state electron transfer from graphene to PTCDI, resulting in band bending that prevents excited holes from transferring from PTCDI to graphene. This feature is exploited in a trilayer heterostructure of graphene/PTCDI/TiOPc, where the spatial separation of photoexcited electrons and holes in graphene and TiOPc, respectively, leads to the formation of long-lived photoexcitations with a lifetime of approximately 500 ps. Furthermore, spatially resolved transient absorption measurements reveal the immobile nature of these excitations, confirming that they are charge-transfer excitons rather than free electrons and holes. These results provide valuable insights into the complex interlayer photoexcitation transfer properties and demonstrate precise control over the layer population and the recombination lifetime of photocarriers in such hybrid heterostructures.more » « less
An official website of the United States government
