skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Aggregation and Excited State Dynamics During Deposition of a Phthalocyanine:Fullerene System
This study seeks to illuminate the aggregation and excited state dynamics of intercalated phthalocyanine:fullerene thin films during deposition viain situUV-vis spectroscopy and a spatially encoded transient absorption (TA) spectroscopy.  more » « less
Award ID(s):
1752129
PAR ID:
10495784
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
Journal Name:
Frontiers in Optics + Laser Science 2023 (FiO, LS) Technical Digest Series
ISBN:
978-1-957171-29-6
Page Range / eLocation ID:
JTu5A.9
Format(s):
Medium: X
Location:
Tacoma, Washington
Sponsoring Org:
National Science Foundation
More Like this
  1. Spectroscopy and hyperspectral imaging are widely used tools for identifying compounds and materials. One optical design is a polarization interferometer that uses birefringent wedges, like a Babinet-Soleil compensator, to create the interferograms that are Fourier transformed to give the spectra. Such designs have lateral spatial offset between thenoandneoptical beams, which reduces the interferogram intensity and creates a spatially dependent phase that is problematic for hyperspectral imaging. The lateral separation between the beams is wavelength dependent, created by the achromatic nature of Babinet-Soleil compensators. We introduce a birefringent wedge design for Fourier transform spectroscopy that creates collinearnoandneoptical beams for optimal interference and no spatial dependent phase. Our 3-wedge design, which we call a Wisconsin interferometer, improves the signal strength of polarization spectrometers, and eliminates phase shifts in hyperspectral imaging. We anticipate that it will find use in analytical, remote sensing, and ultrafast spectroscopy applications. 
    more » « less
  2. Metasurface-enhanced Raman spectroscopy is used to characterize theclassical,crossover, andquantumregimes of a colloidal metasurface as a function of gap distance. 
    more » « less
  3. X-ray spectroscopy is a valuable technique for the study of many materials systems. Characterizing reactionsin situandoperandocan reveal complex reaction kinetics, which is crucial to understanding active site composition and reaction mechanisms. In this project, the design, fabrication and testing of an open-source and easy-to-fabricate electrochemical cell forin situelectrochemistry compatible with X-ray absorption spectroscopy in both transmission and fluorescence modes are accomplished via windows with large opening angles on both the upstream and downstream sides of the cell. Using a hobbyist computer numerical control machine and free 3D CAD software, anyone can make a reliable electrochemical cell using this design. Onion-like carbon nanoparticles, with a 1:3 iron-to-cobalt ratio, were drop-coated onto carbon paper for testingin situX-ray absorption spectroscopy. Cyclic voltammetry of the carbon paper showed the expected behavior, with no increased ohmic drop, even in sandwiched cells. Chronoamperometry was used to apply 0.4 V versus reversible hydrogen electrode, with and without 15 min of oxygen purging to ensure that the electrochemical cell does not provide any artefacts due to gas purging. The XANES and EXAFS spectra showed no differences with and without oxygen, as expected at 0.4 V, without any artefacts due to gas purging. The development of this open-source electrochemical cell design allows for improved collection ofin situX-ray absorption spectroscopy data and enables researchers to perform both transmission and fluorescence simultaneously. It additionally addresses key practical considerations including gas purging, reduced ionic resistance and leak prevention. 
    more » « less
  4. Abstract Polyvinylpyrrolidone (PVP) fibers embedded with Zinc Oxide nanoparticles (ZnO NPs) were prepared by the centrifugal spinning of aqueous PVP solutions and ZnO NPs. The ZnO NPs were synthesized and coated with either cetyltrimethylammonium bromide or hexadecyltrimethylammonium bromide. The structure and morphology of the nanocomposite fibers were studied using scanning electron microscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy and Thermogravimetric analysis. The effect of surfactant coating on the antibacterial activity of ZnO NPs and PVP/ZnO nanocomposite fibers againstEscherichia coli(E. coli) andBacillus megaterium(B. megaterium) bacteria was systematically investigated. The present study indicated that coating the ZnO NPs with surfactants resulted in large and uniform inhibition of bacterial growth. 
    more » « less
  5. Abstract Faraday rotation spectroscopy and absorption spectroscopy are performed simultaneously in a dual comb spectroscopy arrangement with quantum cascade laser combs operating at ∼8μm. The system uses free-running laser combs that provide ∼70 cm−1spectral coverage and ∼2 MHz spectral resolution. Detection of NO2in an equilibrium mixture with N2O4and N2O is used to demonstrate selective measurements of paramagnetic NO2in the presence of spectrally interfering diamagnetic species. 
    more » « less