skip to main content

Title: ANCF curvature continuity: application to soft and fluid materials
The continuity of the position-vector gradients at the nodal points of a finite element mesh does not always ensure the continuity of the gradients at the element interfaces. Discontinuity of the gradients at the interface not only adversely affects the quality of the simulation results, but can also lead to computer models that do not properly represent realistic physical system behaviors, particularly in the case of soft and fluid material applications. In this study, the absolute nodal coordinate formulation (ANCF) finite elements are used to define general curvature-continuity conditions that allow for eliminating or minimizing the discontinuity of the position gradients at the element interface. For the ANCF solid element, with four-node surfaces, it is shownthat continuity of the gradients tangent to an arbitrary point on a surface is ensured as the result of the continuity of the gradients at the nodal points. The general ANCF continuity conditions are applicable to both reference-configuration straight and curved geometries. These conditions are formulated without the need for using the computer-aided-design knot vector and knot multiplicity, which do not account properly for the concept of system degrees of freedom. The ANCF curvature-continuity conditions are written in terms of constant geometric coefficients obtained using the matrix of more » position-vector gradients that defines the reference-configuration geometry. The formulation of these conditions is demonstrated using the ANCF fully parameterized three-dimensional solid and tetrahedral elements, which employ a complete set of position gradients as nodal coordinates. Numerical results are presented in order to examine the effect of applying the curvature-continuity conditions on achieving a higher degree of smoothness at the element interfaces in the case of soft and fluid materials. « less
Authors:
;
Award ID(s):
1852510 1632302
Publication Date:
NSF-PAR ID:
10142770
Journal Name:
Nonlinear Dynamics
ISSN:
0924-090X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The performance of the absolute nodal coordinate formulation (ANCF) tetrahedral element in the analysis of liquid sloshing is evaluated in this paper using a total Lagrangian nonincremental solution procedure. In this verification study, the results obtained using the ANCF tetrahedral element are compared with the results of the ANCF solid element which has been previously subjected to numerical verification and experimental validation. The tetrahedral-element model, which allows for arbitrarily large displacements including rotations, can be systematically integrated with computational multibody system (MBS) algorithms that allow for developing complex sloshing/vehicle models. The new fluid formulation allows for systematically increasing themore »degree of continuity in order to obtain higher degree of smoothness at the element interface, eliminate dependent variables, and reduce the model dimensionality. The effect of the fluid/container interaction is examined using a penalty contact approach. Simple benchmark problems and complex railroad vehicle sloshing scenarios are used to examine the performance of the ANCF tetrahedral element in solving liquid sloshing problems. The simulation results show that, unlike the ANCF solid element, the ANCF tetrahedral element model exhibits nonsmoothness of the free surface. This difference is attributed to the gradient discontinuity at the tetrahedral-element interface, use of different meshing rules for the solid- and tetrahedral-elements, and the interaction between elements. It is shown that applying curvature-continuity conditions leads, in general, to higher degree of smoothness. Nonetheless, a higher degree of continuity does not improve the solution accuracy when using the ANCF tetrahedral elements.« less
  2. Abstract The convergence characteristics of three geometrically accurate spatial finite elements (FEs) are examined in this study using an eigenvalue analysis. The spatial beam, plate, and solid elements considered in this investigation are suited for both structural and multibody system (MBS) applications. These spatial elements are based on geometry derived from the kinematic description of the absolute nodal coordinate formulation (ANCF). In order to allow for an accurate reference-configuration geometry description, the element shape functions are formulated using constant geometry coefficients defined using the position-vector gradients in the reference configuration. The change in the position-vector gradients is used to definemore »a velocity transformation matrix that leads to constant element inertia and stiffness matrices in the case of infinitesimal rotations. In contrast to conventional structural finite elements, the elements considered in this study can be used to describe the initial geometry with the same degree of accuracy as B-spline and nonuniform rational B-spline (NURBS) representations, widely used in the computer-aided design (CAD). An eigenvalue analysis is performed to evaluate the element convergence characteristics in the case of different geometries, including straight, tapered, and curved configurations. The frequencies obtained are compared with those obtained using a commercial FE software and analytical solutions. The stiffness matrix is obtained using both the general continuum mechanics (GCM) approach and the newly proposed strain split method (SSM) in order to investigate its effectiveness as a locking alleviation technique.« less
  3. continuum-based approach for simultaneously controlling the motion and shape of soft robots and materials (SRM) is proposed. This approach allows for systematically computing the actuation forces for arbitrary desired SRM motion and geometry. In order to control both motion and shape the position and position gradients of the absolute nodal coordinate formulation (ANCF) are used to formulate rheonomic specified trajectory and shape constraint equations, used in an inverse dynamics procedure to define the actuation control forces. Unlike control of rigid-body systems which requires a number of independent actuation forces equal to the number of the joint coordinates, the SRM motion/shapemore »control leads to generalized control forces which need to be interpreted differently in order to properly define the actuation forces. While the definition of these motion/shape control forces is demonstrated using air pressure actuation commonly used in the SRM control, the proposed procedure can be applied to other SRM actuation types. The approaches for determining the actuation pressure in the two cases of space-dependent and constant pressures are outlined. Effect of the change in the surface geometry on the actuation pressure is accounted for using Nanson’s formula. The obtained numerical results demonstrate that the motion and shape can be simultaneously controlled using the new actuation force definitions.« less
  4. .The objective of this investigation is to develop a new total Lagrangian continuum-based liquid sloshing model that can be systematically integrated with multibody system (MBS) algorithms in order to allow for studying complex motion scenarios. The new approach allows for accurately capturing the effect of the sloshing forces during curve negotiation, rapid lane change, and accelerating and braking scenarios. In these motion scenarios, the liquid experiences large displacements and significant changes in shape that can be captured effectively using the finite element (FE) absolute nodal coordinate formulation (ANCF). ANCF elements are used in this investigation to describe complex mesh geometries,more »to capture the change in inertia due to the change in the fluid shape, and to accurately calculate the centrifugal forces, which for flexible bodies do not take the simple form used in rigid body dynamics. A penalty formulation is used to define the contact between the rigid tank walls and the fluid. A fully nonlinear MBS truck model that includes a suspension system and Pacejka’s brush tire model is developed. Specified motion trajectories are used to examine the vehicle dynamics in three different scenarios – deceleration during straight-line motion, rapid lane change, and curve negotiation. It is demonstrated that the liquid sloshing changes the contact forces between the tires and the ground – increasing the forces on certain wheels and decreasing the forces on other wheels. In cases of extreme sloshing, this dynamic behavior can negatively impact the vehicle stability by increasing the possibility of wheel lift and vehicle rollover.« less
  5. Two non-overlapping domain decomposition methods are presented for the mixed finite element formulation of linear elasticity with weakly enforced stress symmetry. The methods utilize either displacement or normal stress Lagrange multiplier to impose interface continuity of normal stress or displacement, respectively. By eliminating the interior subdomain variables, the global problem is reduced to an interface problem, which is then solved by an iterative procedure. The condition number of the resulting algebraic interface problem is analyzed for both methods. A multiscale mortar mixed finite element method for the problem of interest on non-matching multiblock grids is also studied. It uses amore »coarse scale mortar finite element space on the non-matching interfaces to approximate the trace of the displacement and impose weakly the continuity of normal stress. A priori error analysis is performed. It is shown that, with appropriate choice of the mortar space, optimal convergence on the fine scale is obtained for the stress, displacement, and rotation, as well as some superconvergence for the displacement. Computational results are presented in confirmation of the theory of all proposed methods.« less