Abstract Extensive research concerns dropwise condensation of low surface tension fluids to promote energy efficiency and decarbonization in thermal energy systems. However, it is challenging as these fluids typically result in filmwise condensation. Drawing inspiration from the Namib desert beetle that enhances condensation through patterned wettability, conventional beetle‐inspired surfaces excel in water condensation but flood when condensing low surface tension fluids. In this work, a patterned quasi‐liquid surface is reported that achieves exceptional dropwise condensation of low surface tension fluids. The surface consists of alternating stripes with low surface energy, that is, a perfluoropolyether (PFPE) and fluorinated quasi‐liquid surface (FQLS), that shows ultralow contact angle hysteresis for ethanol and hexane. The PFPE stripes are slightly more slippery, acting as slippery bridges that accelerate droplet coalescence and removal. It is experimentally demonstrated that the striped PFPE‐FQLS pattern exhibits a heat transfer coefficient 85%, 330%, and 550% higher than that of PFPE, fluorinated silane, and filmwise condensation, respectively. This study reveals that a high contact angle is desired to sustain dropwise condensation, irrespective of contact angle hysteresis. These findings provide a new paradigm for promoting the dropwise condensation of low surface tension fluids and offer valuable insights into surface design for energy sustainability.
more »
« less
Dropwise condensation on solid hydrophilic surfaces
Droplet nucleation and condensation are ubiquitous phenomena in nature and industry. Over the past century, research has shown dropwise condensation heat transfer on nonwetting surfaces to be an order of magnitude higher than filmwise condensation heat transfer on wetting substrates. However, the necessity for nonwetting to achieve dropwise condensation is unclear. This article reports stable dropwise condensation on a smooth, solid, hydrophilic surface (θ a = 38°) having low contact angle hysteresis (<3°). We show that the distribution of nano- to micro- to macroscale droplet sizes (about 100 nm to 1 mm) for coalescing droplets agrees well with the classical distribution on hydrophobic surfaces and elucidate that the wettability-governed dropwise-to-filmwise transition is mediated by the departing droplet Bond number. Our findings demonstrate that achieving stable dropwise condensation is not governed by surface intrinsic wettability, as assumed for the past eight decades, but rather, it is dictated by contact angle hysteresis.
more »
« less
- Award ID(s):
- 1947454
- PAR ID:
- 10142786
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 6
- Issue:
- 2
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- eaax0746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dropwise condensation is well known to result in better heat transfer performance owing to efficient condensate/droplet removal, which can be harnessed in various industrial heat/mass transfer applications such as power generation and conversion, water harvesting/desalination, and electronics thermal management. The key to enhancing condensation via the dropwise mode is thin low surface energy coatings (<100 nm) with low contact angle hysteresis. Ultrathin (<5 nm) silane self assembled monolayers (or SAMs) have been widely studied to promote dropwise condensation due to their minimal thermal resistance and scalable integration processes. Such thin coatings typically degrade within an hour during condensation of water vapor. After coating failure, water vapor condensation transitions to the inefficient filmwise mode with poor heat transfer performance. We enhance silane SAM quality and durability during water vapor condensation on copper compared to state of the art silane coatings on metal surfaces. We achieve this via (i) surface polishing to sub-10 nm levels, (ii) pure oxygen plasma surface treatment, and (iii) silane coating integration with the copper substrate in an anhydrous/moisture-free environment. The resulting silane SAM has low contact angle hysteresis (≈20°) and promotes efficient dropwise condensation of water for >360 hours without any visible sign of coating failure/degradation in the absence of non condensable gases. We further demonstrate enhanced heat transfer performance (≈5 7× increase over filmwise condensation) over an extended period of time. Surface characterization data post-condensation leads us to propose that in the absence of non-condensable gases in the vapor environment, the silane SAM degrades due to reduction and subsequent dissolution of copper oxide at the oligomer-substrate interface. The experiments also indicate that the magnitude of surface subcooling (or condensation rate) affects the rate of coating degradation. This work identifies a pathway to durable dropwise promoter coatings that will enable efficient heat transfer in industrial applications.more » « less
-
Abstract Massive studies concern the development of low‐carbon water and energy systems. Specifically, surfaces with special wettability to promote vapor‐to‐liquid condensation have been widely studied, but current solutions suffer from poor heat transfer performances due to inefficient droplet removal. In this study, the limit of condensation on a beetle‐inspired biphilic quasi‐liquid surface (QLS) in a steam environment is pushed, which provides a heat flux 100 times higher than that in atmospheric condensation. Unlike the beetle‐inspired surfaces that have sticky hydrophilic domains, the biphilic QLS consists of PEGylated and siloxane polymers as hydrophilic and hydrophobic quasi‐liquid patterns with the contact angle hysteresis of 3° and 1°, respectively. More importantly, each hydrophilic slippery pattern behaves like a slippery bridge that accelerates droplet coalescence and removal. As a result, the condensed droplets grow rapidly and shed off. It is demonstrated that the biphilic‐striped QLS shows a 60% higher water harvesting rate in atmospheric condensation and a 170% higher heat transfer coefficient in steam condensation than the conventional beetle‐inspired surface. This study provides a new paradigm to push the limit of condensation heat transfer at a high heat flux, which sheds light on the next‐generation surface design for water and energy sustainability.more » « less
-
Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequency of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement.more » « less
-
Dropwise condensation heat transfer is significantly higher than filmwise condensation heat transfer due to the absence of the thermal resistance associated with the condensed water film. This study uses electrowetting to enhance coalescence and roll-off of condensed droplets, with the objective of enhancing the condensation rate. Coalescence enhancement is achieved by electric field-driven droplet motion such as translation of droplets, and oscillations of the three-phase line. Experiments are conducted to study early-stage droplet growth dynamics, and steady state condensation under electrowetting fields. Results show that droplet growth and roll-off increases with the voltage and frequency of the applied AC field. AC electric fields are seen to be more effective than DC electric fields. The overall condensation rate depends on the roll-off size of droplets, frequency of roll-off events, and on the interactions of the rolled-off droplets with the remainder of the droplets. All these phenomena can be altered by the applied electric field. An analytical heat transfer model is developed which uses the measured droplet size distribution to estimate the surface heat flux. Overall, this study reports that electric fields can enhance the condensation rate by more than 30 %.more » « less
An official website of the United States government

