skip to main content

Title: Efficient Cobalt Catalyst for Ambient-Temperature Nitrile Dihydroboration, the Elucidation of a Chelate-Assisted Borylation Mechanism, and a New Synthetic Route to Amides
N,N-Diborylamines have emerged as promising reagents in organic synthesis; however, their efficient preparation and full synthetic utility have yet to be realized. To address both shortcomings, an effective catalyst for nitrile dihydroboration was sought. Heating CoCl2 in the presence of PyEtPDI afforded the six-coordinate Co(II) salt, [(PyEtPDI)CoCl][Cl]. Upon adding 2 equiv of NaEt3BH, hydride transfer to one chelate imine functionality was observed, resulting in the formation of (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Single-crystal X-ray diffraction and density functional theory calculations revealed that this compound possesses a low-spin Co(II) ground state featuring antiferromagnetic coupling to a singly reduced imino(pyridine) moiety. Importantly, (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co was found to catalyze the dihydroboration of nitriles using HBPin with turnover frequencies of up to 380 h–1 at ambient temperature. Stoichiometric addition experiments revealed that HBPin adds across the Co–Namide bond to generate a hydride intermediate that can react with additional HBPin or nitriles. Computational evaluation of the reaction coordinate revealed that the B–H addition and nitrile insertion steps occur on the antiferromagnetically coupled triplet spin manifold. Interestingly, formation of the borylimine intermediate was found to occur following BPin transfer from the borylated chelate arm to regenerate (κ4-N,N,N,N-PyEtIPCHMeNEtPy)Co. Borylimine reduction is in turn facile and follows the same ligand-assisted borylation pathway. The more » independent hydroboration of alkyl and aryl imines was also demonstrated at 25 °C. With a series of N,N-diborylamines in hand, their addition to carboxylic acids allowed for the direct synthesis of amides at 120 °C, without the need for an exogenous coupling reagent. « less
; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Journal of the American Chemical Society
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the synthesis and reactivity of a model of [Fe]-hydrogenase derived from an anthracene-based scaffold that includes the endogenous, organometallic acyl(methylene) donor. In comparison to other non-scaffolded acyl-containing complexes, the complex described herein retains molecularly well-defined chemistry upon addition of multiple equivalents of exogenous base. Clean deprotonation of the acyl(methylene) C–H bond with a phenolate base results in the formation of a dimeric motif that contains a new Fe–C(methine) bond resulting from coordination of the deprotonated methylene unit to an adjacent iron center. This effective second carbanion in the ligand framework was demonstrated to drive heterolytic H 2 activationmore »across the Fe( ii ) center. However, this process results in reductive elimination and liberation of the ligand to extrude a lower-valent Fe–carbonyl complex. Through a series of isotopic labelling experiments, structural characterization (XRD, XAS), and spectroscopic characterization (IR, NMR, EXAFS), a mechanistic pathway is presented for H 2 /hydride-induced loss of the organometallic acyl unit ( i.e. pyCH 2 –CO → pyCH 3 +CO). The known reduced hydride species [HFe(CO) 4 ] − and [HFe 3 (CO) 11 ] − have been observed as products by 1 H/ 2 H NMR and IR spectroscopies, as well as independent syntheses of PNP[HFe(CO) 4 ]. The former species ( i.e. [HFe(CO) 4 ] − ) is deduced to be the actual hydride transfer agent in the hydride transfer reaction (nominally catalyzed by the title compound) to a biomimetic substrate ([ Tol Im](BAr F ) = fluorinated imidazolium as hydride acceptor). This work provides mechanistic insight into the reasons for lack of functional biomimetic behavior (hydride transfer) in acyl(methylene)pyridine based mimics of [Fe]-hydrogenase.« less
  2. Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N2→ 2NH3reduction involves the reductive elimination (re) of H2from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H2for each N2reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad rangemore »in complexity, while evaluating a diverse set of density functional theory flavors. (i) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[e/H+] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. (ii) These calculations indicate an important role of sulfide hemilability in the overall conversion ofE0to a diazene-level intermediate. (iii) Perhaps most importantly, they explain (iiia) how the enzyme mechanistically couples exothermic H2formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutralre/oxidative-addition equilibrium, (iiib) while preventing the “futile” generation of two H2without N2reduction: hydrideregenerates an H2complex, but H2is only lost when displaced by N2, to form an end-on N2complex that proceeds to a diazene-level intermediate.

    « less
  3. The transfer of a β-hydrogen from a metal-alkyl group to ethylene is a fundamental organometallic transformation. Previously proposed mechanisms for this transformation involve either a two-step β-hydrogen elimination and migratory insertion sequence with a metal hydride intermediate or a one-step concerted pathway. Here, we report density functional theory (DFT) quasiclassical direct dynamics trajectories that reveal new dynamical mechanisms for the β-hydrogen transfer of [Cp*Rh III (Et)(ethylene)] + . Despite the DFT energy landscape showing a two-step mechanism with a Rh–H intermediate, quasiclassical trajectories commencing from the β-hydrogen elimination transition state revealed complete dynamical skipping of this intermediate. The skipping occurredmore »either extremely fast (typically <100 femtoseconds (fs)) through a dynamically ballistic mechanism or slower through a dynamically unrelaxed mechanism. Consistent with trajectories begun at the transition state, all trajectories initiated at the Rh–H intermediate show continuation along the reaction coordinate. All of these trajectory outcomes are consistent with the Rh–H intermediate <1 kcal mol −1 stabilized relative to the β-hydrogen elimination and migratory insertion transition states. For Co, which on the energy landscape is a one-step concerted mechanism, trajectories showed extremely fast traversing of the transition-state zone (<50 fs), and this concerted mechanism is dynamically different than the Rh ballistic mechanism. In contrast to Rh, for Ir, in addition to dynamically ballistic and unrelaxed mechanisms, trajectories also stopped at the Ir–H intermediate. This is consistent with an Ir–H intermediate that is stabilized by ∼3 kcal mol −1 relative to the β-hydrogen elimination and migratory insertion transition states. Overall, comparison of Rh to Co and Ir provides understanding of the relationship between the energy surface shape and resulting dynamical mechanisms of an organometallic transformation.« less
  4. The density functional theory method is used to elucidate the elementary steps of Ni( ii )-catalyzed C(sp 2 )–H iodination with I 2 and substrates bearing N , N ′-bidentate directing centers, amide-oxazoline (AO) and 8-aminoquinoline (AQ). The relative stability of the lowest energy high- and low-spin electronic states of the catalyst and intermediates is found to be an important factor for all of the steps in the reaction. As a result, two-state reactivity for these systems is reported, where the reaction is initiated on the triplet surface and generates a high energy singlet nickelacycle. It is shown that themore »addition of Na 2 CO 3 base to the reaction mixture facilitates C–H activation. The presence of I 2 in the reaction provides the much needed driving force for the C–H activation and nickelacycle formation and ultimately reacts to form a new C–I bond through either a redox neutral electrophilic cleavage (EC) pathway or a one-electron reductive cleavage (REC) pathway. The previously proposed Ni( ii )/Ni( iv ) and homolytic cleavage pathways are found to be higher in energy. The nature of the substrate is found to have a large impact on the relative stability of the lowest electronic states and on the stability of the nickelacycle resulting from C–H activation.« less
  5. Synthesis and isolation of molecular building blocks of metal–organic frameworks (MOFs) can provide unique opportunities for characterization that would otherwise be inaccessible due to the heterogeneous nature of MOFs. Herein, we report a series of trinuclear cobalt complexes incorporating dithiolene ligands, triphenylene-2,3,6,7,10,11-hexathiolate (THT) (13+), and benzene hexathiolate (BHT) (23+), with 1,1,1,-tris(diphenylphosphinomethyl)ethane (triphos) employed as the capping ligand. Single crystal X-ray analyses of 13+ and 23+ display three five-coordinate cobalt centers bound to the triphos and dithiolene ligands in a distorted square pyramidal geometry. Cyclic voltammetry studies of 13+ and 23+ reveal three redox features associated with the formation of mixedmore »valence states due to the sequential reduction of the redox-active metal centers (Co III/II ). Using this electrochemical data, the comproportionality values were determined for 1 and 2 (log  K c = 1.4 and 1.5 for 1, and 4.7 and 5.8 for 2), suggesting strong resonance-stabilized coupling of the metal centers, with stronger electronic coupling observed for complex 2 compared to that for complex 1. Cyclic voltammetry studies were also performed in solvents of varying polarity, whereupon the difference in the standard potentials (Δ E 1/2 ) for 1 and 2 was found to shift as a function of the polarity of the solvent, indicating a negative correlation between the dielectric constant of the electrochemical medium and the stability of the mixed valence species. Spectroelectrochemical studies of in situ generated multi-valent (MV) states of complexes 1 and 2 display characteristic NIR intervalence charge transfer (IVCT) bands, and analysis of the IVCT transitions for complex 2 suggests a weakly coupled class II multi-valent species and relatively large electronic coupling factors (1700 cm −1 for the first multi-valent state of 22+, and 1400 and 4000 cm −1 for the second multi-valent state of 2+). Density functional theory (DFT) calculations indicate a significant deviation in relative energies of the frontier orbitals of complexes 13+, 23+, and 3+ that contrasts those calculated for the analogous trinuclear cobalt dithiolene complexes employing pentamethylcyclopentadienyl (Cp*) as the capping ligand (Co3Cp*3THT and Co3Cp*3BHT, respectively), and may be a result of the cationic nature of complexes 13+, 23+, and 3+.« less