skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Extracting Impervious Surface from Aerial Imagery Using Semi-Automatic Sampling and Spectral Stability
The quantification of impervious surface through remote sensing provides critical information for urban planning and environmental management. The acquisition of quality reference data and the selection of effective predictor variables are two factors that contribute to the low accuracies of impervious surface in urban remote sensing. A hybrid method was developed to improve the extraction of impervious surface from high-resolution aerial imagery. This method integrates ancillary datasets from OpenStreetMap, National Wetland Inventory, and National Cropland Data to generate training and validation samples in a semi-automatic manner, significantly reducing the effort of visual interpretation and manual labeling. Satellite-derived surface reflectance stability is incorporated to improve the separation of impervious surface from other land cover classes. This method was applied to 1-m National Agriculture Imagery Program (NAIP) imagery of three sites with different levels of land development and data availability. Results indicate improved extractions of impervious surface with user’s accuracies ranging from 69% to 90% and producer’s accuracies from 88% to 95%. The results were compared to the 30-m percent impervious surface data of the National Land Cover Database, demonstrating the potential of this method to validate and complement satellite-derived medium-resolution datasets of urban land cover and land use.  more » « less
Award ID(s):
1829999
PAR ID:
10143037
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
3
ISSN:
2072-4292
Page Range / eLocation ID:
506
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Grassland monitoring can be challenging because it is time-consuming and expensive to measure grass condition at large spatial scales. Remote sensing offers a time- and cost-effective method for mapping and monitoring grassland condition at both large spatial extents and fine temporal resolutions. Combinations of remotely sensed optical and radar imagery are particularly promising because together they can measure differences in moisture, structure, and reflectance among land cover types. We combined multi-date radar (PALSAR-2 and Sentinel-1) and optical (Sentinel-2) imagery with field data and visual interpretation of aerial imagery to classify land cover in the Masai Mara National Reserve, Kenya using machine learning (Random Forests). This study area comprises a diverse array of land cover types and changes over time due to seasonal changes in precipitation, seasonal movements of large herds of resident and migratory ungulates, fires, and livestock grazing. We classified twelve land cover types with user’s and producer’s accuracies ranging from 66%–100% and an overall accuracy of 86%. These methods were able to distinguish among short, medium, and tall grass cover at user’s accuracies of 83%, 82%, and 85%, respectively. By yielding a highly accurate, fine-resolution map that distinguishes among grasses of different heights, this work not only outlines a viable method for future grassland mapping efforts but also will help inform local management decisions and research in the Masai Mara National Reserve. 
    more » « less
  2. High resolution mapping of coastal habitats is invaluable for resource inventory, change detection, and inventory of aquaculture applications. However, coastal areas, especially the interior of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time observations. Despite the recent and rapid development of UAV mapping applications, few articles have quantitatively compared how much improvement there is of UAV multispectral mapping methods compared to more conventional remote sensing data such as satellite imagery. The objective of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping technique for higher resolution images used for advanced mapping and assessing coastal land cover. We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover for the same region. NDVI and object-oriented classification methods were used for comparison between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida Department of Environmental Protection, the UAV multi-spectral mapping method used in this study provided advanced information of the physical conditions of the study area, an improved land feature delineation, and a significantly better mapping product than satellite imagery with coarser resolution. The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that lack high quality data. 
    more » « less
  3. Arctic landscapes are rapidly changing with climate warming. Vegetation communities are restructuring, which in turn impacts wildlife, permafrost, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but notable mismatches in scale occur between current field and satellite-based monitoring. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite imagery mapping. In this work we assess the viability of using high resolution UAV imagery (RGB and multispectral), along with UAV derived Structure from Motion (SfM) to predict cover, height and above-ground biomass of common Arctic plant functional types (PFTs) across a wide range of vegetation community types. We collected field data and UAV imagery from 45 sites across Alaska and northwest Canada. We then classified UAV imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Here we present datasets summarizing this data. 
    more » « less
  4. Abstract

    The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.

     
    more » « less
  5. Arctic vegetation communities are rapidly changing with climate warming, which impacts wildlife, carbon cycling and climate feedbacks. Accurately monitoring vegetation change is thus crucial, but scale mismatches between field and satellite-based monitoring cause challenges. Remote sensing from unmanned aerial vehicles (UAVs) has emerged as a bridge between field data and satellite-based mapping. We assess the viability of using high resolution UAV imagery and UAV-derived Structure from Motion (SfM) to predict cover, height and aboveground biomass (henceforth biomass) of Arctic plant functional types (PFTs) across a range of vegetation community types. We classified imagery by PFT, estimated cover and height, and modeled biomass from UAV-derived volume estimates. Predicted values were compared to field estimates to assess results. Cover was estimated with root-mean-square error (RMSE) 6.29-14.2% and height was estimated with RMSE 3.29-10.5 cm, depending on the PFT. Total aboveground biomass was predicted with RMSE 220.5 g m-2, and per-PFT RMSE ranged from 17.14-164.3 g m-2. Deciduous and evergreen shrub biomass was predicted most accurately, followed by lichen, graminoid, and forb biomass. Our results demonstrate the effectiveness of using UAVs to map PFT biomass, which provides a link towards improved mapping of PFTs across large areas using earth observation satellite imagery. 
    more » « less