skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Devising Efficient Red‐Shifting Strategies for Bioimaging: A Generalizable Donor‐Acceptor Fluorophore Prototype
Abstract Long emission wavelengths, high fluorescence quantum yields (FQYs), and large Stokes shifts are highly desirable features for fluorescent probes in biological imaging. However, the current development of many fluorescent probes remains largely trial‐and‐error and lacks efficiency. Moreover, to achieve far‐red/near‐infrared emission, a significant extension in the‐conjugation is usually adopted but accompanied by other drawbacks such as fluorescence loss. In this review, we discuss an effective red‐shifting strategy built upon the green fluorescent protein chromophore, which enables a synergistic tuning of both the electronic ground and excited states. This approach could shorten the path toward redder emission in comparison to the conventional intramolecular charge transfer (ICT) strategy. We envision that this spectroscopy and computation‐aided strategy may advance the noncanonical fluorescent protein design and be generalized to various fluorophore scaffolds for redder emission while preserving other superior properties such as high FQYs.  more » « less
Award ID(s):
1455353
PAR ID:
10143542
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – An Asian Journal
Volume:
15
Issue:
10
ISSN:
1861-4728
Format(s):
Medium: X Size: p. 1514-1523
Size(s):
p. 1514-1523
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fluorescence‐activating proteins (FAPs) that bind a chromophore and activate its fluorescence have gained popularity in bioimaging. The fluorescence‐activating and absorption‐shifting tag (FAST) is a light‐weight FAP that enables fast reversible fluorogen binding, thus advancing multiplex and super‐resolution imaging. However, the rational design of FAST‐specific fluorogens with large fluorescence enhancement (FE) remains challenging. Herein, a new fluorogen directly engineered from green fluorescent protein (GFP) chromophore by a unique double‐donor‐one‐acceptor strategy, which exhibits an over 550‐fold FE upon FAST binding and a high extinction coefficient of approximately 100,000 M−1 cm−1, is reported. Correlation analysis of the excited state nonradiative decay rates and environmental factors reveal that the large FE is caused by nonpolar protein−fluorogen interactions. Our deep insights into structure‐function relationships could guide the rational design of bright fluorogens for live‐cell imaging with extended spectral properties such as redder emissions. 
    more » « less
  2. Consider algorithms with unbounded computation time that probe the entries of the adjacency matrix of annvertex graph, and need to output a clique. We show that if the input graph is drawn at random from(and hence is likely to have a clique of size roughly), then for everyδ<2 and constantℓ, there is anα<2 (that may depend onδandℓ) such that no algorithm that makesnδprobes inℓrounds is likely (over the choice of the random graph) to output a clique of size larger than. 
    more » « less
  3. The incorporation of noncanonical amino acids (ncAAs) into fluorescent proteins is promising for red-shifting their fluorescence and benefiting tissue imaging with deep penetration and low phototoxicity. However, ncAA-based red fluorescent proteins (RFPs) have been rare. The 3-aminotyrosine modified superfolder green fluorescent protein (aY-sfGFP) represents a recent advance, yet the molecular mechanism for its red-shifted fluorescence remains elusive while its dim fluorescence hinders applications. Herein, we implement femtosecond stimulated Raman spectroscopy to obtain structural fingerprints in the electronic ground state and reveal that aY-sfGFP possesses a GFP-like instead of RFP-like chromophore. Red color of aY-sfGFP intrinsically arises from a unique “double-donor” chromophore structure that raises ground-state energy and enhances charge transfer, notably differing from the conventional conjugation mechanism. We further developed two aY-sfGFP mutants (E222H and T203H) with significantly improved (∼12-fold higher) brightness by rationally restraining the chromophore's nonradiative decay through electronic and steric effects, aided by solvatochromic and fluorogenic studies of the model chromophore in solution. This study thus provides functional mechanisms and generalizable insights into ncAA-RFPs with an efficient route for engineering redder and brighter fluorescent proteins. 
    more » « less
  4. Abstract Amyloid protein aggregation is associated with many neurodegenerative diseases, including amyloid‐β (Aβ)in Alzheimer disease, human islet amyloid polypeptide (hIAPP) in type II diabetes, and human calcitonin (hCT) in medullary thyroid carcinoma. Significant efforts have been made to develop different diagnostic and prevention strategies for the early detection and intervention of these disease‐causative protein aggregates. However, conventional design wisdoms are mostly limited to the molecules with either single function (amyloid imaging or amyloid prevention) or single targeting protein (Aβ, hIAPP, or hCT). Here, a rational design strategy of an amyloid‐aggregation‐induced emission (AIE)‐active molecule is demonstrated by conjugating an amyloid fragment of GNNQQNY (G7) with an AIE fluorescent molecule of triphenylvinyl benzoic acid (namely, G7‐TBA), making G7‐TBA as multiple‐target, dual‐function, amyloid probes and amyloid modulators for detecting, monitoring, and altering amyloid aggregation of three different amyloid proteins (Aβ, hIAPP, and hCT). G7‐TBA probe shows conformationally specific binding affinities to amyloid aggregates, switching from an “off” state (low fluorescence) for amyloid monomers to an “on” state (high fluorescence) for β‐structure‐rich amyloid oligomers and fibrils in aqueous solution. Further surface immobilization of TBA probes on surface plasmon resonance surfaces allows to amplify detection sensitivity and binding affinity to amyloid aggregates formed at different aggregation stages. G7‐TBA as amyloid modulator enables acceleration of amyloid fibrillization and selectively protects cells from hIAPP‐induced toxicity. The distinct amyloid detection and modulation of G7‐TBA are essentially derived from the cross‐seeding between G7 and amyloid aggregation via β‐structure interaction, which by far exceed the binding affinity between commercial ThT and amyloid aggregates. Such design concepts of amyloid‐AIE conjugates can be further explored as multiple‐function and target probes and/or modulators for biomedical applications. 
    more » « less
  5. Abstract The accuracy of charge‐transfer excitation energies, solvatochromic shifts, and other environmental effects calculated via various density‐embedding techniques depend critically on the approximations employed for the nonadditive noninteracting kinetic energy functional,. Approximating this functional remains an important challenge in electronic‐structure theory. To assist in the development and testing of approximations for, we derive two virial relations for fragments in molecules. These establish separate connections between the nonadditive kinetic energies of the noninteracting and interacting systems of electrons, and quantities such as the electron‐nuclear attraction forces, the partition (or embedding) energy and potential, and the Kohn‐Sham potentials of the system and its parts. We numerically verify both relations on diatomic molecules. 
    more » « less