skip to main content

Title: Mode-selective few-mode Brillouin fiber lasers based on intramodal and intermodal SBS

Mode-selective fiber lasers have advantages in a number of applications. Here we propose and experimentally demonstrate a transverse mode-selective few-mode Brillouin fiber laser using the mode-selective photonic lantern. We generated the lowest three orders of linearly polarized (LP) modes based on both intramodal and intermodal stimulated Brillouin scattering (SBS). Their slope efficiencies, optical spectra, mode profiles, and linewidths were measured.

; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Optics Letters
Page Range or eLocation-ID:
Article No. 2323
0146-9592; OPLEDP
Optical Society of America
Sponsoring Org:
National Science Foundation
More Like this
  1. The Brillouin instability (BI) due to stimulated Brillouin scattering (SBS) and the transverse (thermal) mode instability (TMI) due to stimulated thermal Rayleigh scattering (STRS) limit the achievable power in high-power lasers and amplifiers. The pump power threshold for BI increases as the core diameter increases, but the threshold for TMI may decrease as the core diameter increases. In this paper, we use a multi-time-scale approach to simultaneously model BI and TMI, which gives us the ability to find the fiber diameter with the highest power threshold. We formulate the equations to compare the thresholds of the combined and individual TMI and BI models. At the pump power threshold and below, there is a negligible difference between the full and individual models, as BI and TMI are not strong enough to interact with each other. The highest pump threshold occurs at the optimal core size of 43µm for the simple double-clad geometry that we considered. We found that both effects contribute equally to the threshold, and the full BI and TMI model yields a similar threshold as the BI or TMI model alone. However, once the reflectivity is sufficiently large, we find in the full BI and TMI model thatmore »BI may trigger TMI and reduce the TMI threshold to a value lower than is predicted in simulations with TMI alone. This result cannot be predicted by models that consider BI and TMI separately. Our approach can be extended to more complex geometries and used for their optimization.

    « less
  2. We study the Brillouin instability and the transverse mode instability in a combined computational model for fiber amplifiers. We find the optimal core diameter, which leads to the highest power threshold and output power.
  3. We present a scheme for spatial-mode-selective frequency conversion in a few-mode fiber and experimentally demonstrate upconversion of arbitrary superpositions of two signal modes from C-band to the fundamental mode in S-band with conversion efficiencies within 1 dB range of one another.
  4. We present a scheme for spatial-mode-selective frequency conversion in a few-mode fiber and experimentally demonstrate upconversion of either of two signal modes from C-band to fundamental mode in S-band with crosstalk below –15.5 dB.
  5. Integrated acousto-optic (AO) devices utilize the strong overlap of acoustic and optical fields in a waveguide to facilitate efficient photon–phonon (Brillouin) interactions. For example, acoustic waves offer a lossless modulation mechanism for light. “Brillouin active” photonic platforms are currently being developed that may see optical, acoustic, and AO waveguide circuits on the same chip, where guided light and sound come together in active interaction regions. A key missing component for such a platform is a device that can multiplex modes across these two physical domains. We propose and describe a new class of optical and acoustic components, the “acoustic–optical mode multiplexer” (AOMM), a device that takes respective optical and acoustic waveguides as input ports and couples their excited guided modes into a single, joint output waveguide. We show an example suspended silicon–silicon dioxide design that combines two optical modes and a spatially separate acoustic mode into a single, co-guided output port with low insertion loss down to 0.3 dB for both optical and acoustic modes, and reflection below−<#comment/>20dBand−<#comment/>11dB, respectively. The AOMM may enable new, efficient integrated AO devices, such as isolators and circulators, where the acoustic wave generation andmore »opto-acoustic interaction are separated.

    « less