skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selective sensing of THC and related metabolites in biofluids by host:guest arrays
A water-soluble host molecule can bind tetrahydrocannabinol ( Δ9-THC ) and its metabolites in aqueous solution. By pairing this recognition event in a sensing array with fluorescent reporters and varying external mediators, pattern recognition-based detection is possible, which allows selective discrimination of the THC metabolites. The selective sensing can be performed in aqueous solution with micromolar sensitivity, as well as in biofluids such as urine and saliva. Metabolites as similar as Δ8- and Δ9-THC , differing only in the position of a double bond, can be distinguished.  more » « less
Award ID(s):
1707347
PAR ID:
10143796
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Communications
ISSN:
1359-7345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Banks, Craig (Ed.)
    The Fast Blue BB (FBBB) and 4-aminophenol (4-AP) colorimetric tests have been reportedly used for the qualitative determination of Δ9-THC in plants and for the differentiation between marijuana and hemp-type cannabis. We report the miniaturization of the FBBB colorimetric reaction on a silicone treated filter paper substrate and the analytical figures of merit for a quantitative determination of Δ9-THC for the first time. The reaction between Δ9-THC and FBBB forms a red chromophore that fluoresces when irradiated with visible (480 nm) or UV (365 nm) light, providing a 3-fold increase in sensitivity. Portable instruments are introduced for the objective color determination for both tests and for the fluorescence reading of the THC + FBBB complex. We report a fluorescence signal with Δ9-THC, Δ8-THC, and CBN. The limit of detection (LOD) was determined to be 1.6 ng/μL with precision ~12 % RSD for standard Δ9-THC solutions ranging between 5 and 20 ng/μL. The linear dynamic range for this test is reported between 1.6 ng/μL and 20 ng/μL for the portable fluorescence detector. The miniaturization of both colorimetric tests and the increased sensitivity of the FBBB test using fluorescence analysis, coupled to portable instruments allows for limited quantitative analysis of cannabis plants in the field. 
    more » « less
  2. Cationic water-soluble deep cavitands enable hierarchical assembly-based recognition, optical detection and extraction of perfluoroalkyl substances (PFAS) in aqueous solution. Recognition of the PFAS occurs at the lower rim crown of the cavitand, which triggers self-aggregation of a PFAS-cavitand complex, allowing extraction from water. In addition, when paired with an indicator dye that can be bound in the cavity of the host molecule, the PFAS-cavitand association causes a significant (>20-fold at micromolar [PFAS]) enhancement of dye fluorescence due to conformational rearrangement of the fluxional cavitand AMI, allowing optical sensing of PFAS. The cavitands are water-soluble, and the detection and recognition occur in purely aqueous solution. The association is most effective for long chain sulfonate PFAS, and as such, selective optical detection of perfluorooctanesulfonate is possible, with a LOD = 130 nM in buffered water, and 500 nM in real-world samples such as polluted canal water. By pairing the AMI host with multiple dyes in an array-based format, full discrimination of five other PFAS can be achieved at micromolar concentration via differential sensing. In addition, the aggregation process allows extraction of PFAS from solution, and a 99% reduction of PFOS concentration in water is possible with a single treatment of an equimolar concentration of AMI cavitand. The hierarchical nature of the cavitand recognition system allows both selective, sensitive optical detection and extraction of PFAS from water with a single scaffold. 
    more » « less
  3. Water-soluble deep cavitands with cationic functions at the lower rim can selectively bind iodide anions in purely aqueous solution. By pairing this lower rim recognition with an indicator dye that is bound in the host cavity, optical sensing of anions is possible. The selectivity for iodide is high enough that micromolar concentrations of iodide can be detected in the presence of molar chloride. Iodide binding at the “remote” lower rim causes a conformational change in the host, displacing the bound dye from the cavity and effecting a fluorescence response. The sensing is sensitive, selective, and works in complex environments, so will be important for optical anion detection in biorelevant media. 
    more » « less
  4. Accurate quantitation of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is essential for regulatory compliance, forensic investigations, and cannabis product development. Traditional methods, such as liquid chromatography (LC) and gas chromatography (GC) coupled with mass spectrometry, provide reliable results but are time-consuming and resource-intensive. This study introduces a rapid and high-throughput analytical method using zone heat-assisted direct analysis in real time mass spectrometry (DART-MS) combined with in-situ flash derivatization. The method employs trimethylphenylammonium hydroxide (TMPAH) for efficient derivatization, allowing for the differentiation of THC, CBD, and their acidic precursors, Δ9-tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). A custom heated transfer zone was implemented to enhance derivatization efficiency and reduce carryover effects. The method was optimized for reagent concentration and gas stream temperature, achieving high specificity by minimizing interference from isomeric cannabinoids. Validation studies demonstrate good accuracy (relative error within ±15.9 %) and precision (relative standard deviation ≤15 %), with limits of quantitation of 7.5 µg/mL for THC/CBD and 0.5 µg/mL for THCA/CBDA. Comparative analysis of cannabis samples showed a strong correlation with reference LC/MS results, highlighting the reliability of the proposed method. DART-MS offers a significant time advantage, requiring only 10 s per analysis, making it a promising tool for high-throughput screening of cannabis samples in forensic laboratories. 
    more » « less
  5. Abstract A novel surface modification approach is taken to cyanide‐sensing by using functionalized cellulose surface that is chemically modified by immobilizing cobalt(II)‐bis‐terpyridine complex on it. The cobalt(II)‐bis‐tpy complex can exhibit selective “naked eye” colorimetric detection of micromolar level cyanide in aqueous solution, where the visible red‐orange color of cobalt(II)‐bis‐tpy complex solution (aqueous) disappears in the presence of cyanide ions. In order to make the sensor more proficient and easy to use, these cobalt(II)‐bis‐tpy molecules are chemically grafted on the surface of microcrystalline cellulose and cellulose paper, which turns the color of functionalized cellulose orange‐red. Both of these colored cellulose powder and paper exhibit color loss in 10−6maqueous solution of potassium cyanide. This functionalized hybrid inorganic–organic paper offers an easy “dip and detect” cyanide sensing. 
    more » « less