skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bose polarons near quantum criticality
The emergence of quasiparticles in interacting matter represents one of the cornerstones of modern physics. However, in the vicinity of a quantum critical point, the existence of quasiparticles comes under question. Here, we created Bose polarons near quantum criticality by immersing atomic impurities in a Bose-Einstein condensate (BEC) with near-resonant interactions. Using radiofrequency spectroscopy, we probed the energy, spectral width, and short-range correlations of the impurities as a function of temperature. Far below the superfluid critical temperature, the impurities formed well-defined quasiparticles. Their inverse lifetime, given by their spectral width, increased linearly with temperature at the so-called Planckian scale, consistent with quantum critical behavior. Close to the BEC critical temperature, the spectral width exceeded the impurity’s binding energy, signaling a breakdown of the quasiparticle picture.  more » « less
Award ID(s):
1734011
PAR ID:
10143811
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Association for the Advancement of Science (AAAS)
Date Published:
Journal Name:
Science
Volume:
368
Issue:
6487
ISSN:
0036-8075
Page Range / eLocation ID:
p. 190-194
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The quasi-two-dimensional exciton subsystem in CdSe nanoplatelets is considered. It is theoretically shown that Bose–Einstein condensation (BEC) of excitons is possible at a nonzero temperature in the approximation of an ideal Bose gas and in the presence of an “energy gap” between the ground and the first excited states of the two-dimensional exciton center of inertia of the translational motion. The condensation temperature increases with the width of the “gap” between the ground and the first excited levels of size quantization. It is shown that when the screening effect of free electrons and holes on bound excitons is considered, the BEC temperature of the exciton subsystem increases as compared to the case where this effect is absent. The energy spectrum of the exciton condensate in a CdSe nanoplate is calculated within the framework of the weakly nonideal Bose gas approximation, considering the specifics of two-dimensional Born scattering. 
    more » « less
  2. Abstract At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of matter known as a Bose–Einstein condensate (BEC), in which a large fraction of the particles will occupy the ground state simultaneously. Here we explore the performance of an endoreversible Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze the engine operation in three regimes, with the working medium in the BEC phase, in the gas phase, and driven across the BEC transition during each cycle. We find that the unique properties of the BEC phase allow for enhanced engine performance, including increased power output and higher efficiency at maximum power. 
    more » « less
  3. Ensembles of particles governed by quantum mechanical laws exhibit fascinating emergent behavior. Atomic quantum gases, liquid helium, and electrons in quantum materials all show distinct properties due to their composition and interactions. Quantum degenerate samples of bosonic dipolar molecules promise the realization of novel phases of matter with tunable dipolar interactions and new avenues for quantum simulation and quantum computation. However, rapid losses, even when reduced through collisional shielding techniques, have so far prevented cooling to a Bose-Einstein condensate (BEC). In this work, we report on the realization of a BEC of dipolar molecules. By strongly suppressing two- and three-body losses via enhanced collisional shielding, we evaporatively cool sodium-cesium (NaCs) molecules to quantum degeneracy. The BEC reveals itself via a bimodal distribution and a phase-space-density exceeding one. BECs with a condensate fraction of 60(10) % and a temperature of 6(2) nK are created and found to be stable with a lifetime close to 2 seconds. This work opens the door to the exploration of dipolar quantum matter in regimes that have been inaccessible so far, promising the creation of exotic dipolar droplets, self-organized crystal phases, and dipolar spin liquids in optical lattices. 
    more » « less
  4. Abstract We examine key aspects of the theory of the Bardeen–Cooper–Schrieffer (BCS) to Bose–Einstein condensation (BEC) crossover, focusing on the temperature dependence of the chemical potential,μ. We identify an accurate method of determining the change ofμin the cuprate high temperature superconductors from angle-resolved-photoemission data (along the ‘nodal’ direction), and show thatμvaries by less than a few percent of the Fermi energy over a range of temperatures from far below to several times above the superconducting transition temperature,Tc. This shows, unambiguously, that not only are these materials always on the BCS side of the crossover (which is a phase transition in thed-wave case), but are nowhere near the point of the crossover (where the chemical potential approaches the band bottom). 
    more » « less
  5. Keller, Hugo; Bussmann-Holder, Annette; Deutscher, Guy; Lorenzana, José; Malozemoff, Alexis P.; Mihailovic, Dragan; Chu, Ching W (Ed.)
    Part of Special Issue: Oxide superconductors and beyond - In memoriam of Professor Karl Alex Müller, Abstract: Discovery of high-Tc cuprate superconductors (HTSC) in 1986 by Bednorz and Muller, followed by synthesis of A3C60, iron-pnictides/chalcogenides and other exotic superconducting (SC) systems, introduced unconventional superconductors (UCSC) having their mechanisms of condensation and/or pairing distinctly different from those of simpler metals which can be explained by BCS theory. This article will show how one can demonstrate their new mechanisms by examining correlations among key energy-scale parameters, including the transition temperature Tc, the superfluid density ns/m*, the effective Fermi energy εF, the excitation energy of the magnetic resonance mode (MRM), the onset temperatures of Nernst effect and light-induced transient superconductivity, and the spin fluctuation energy scale ℏωsf, and by resorting to analogy / comparisons with superfluid 4He as a representative system undergoing Bose Einstein Condensation (BEC). We will propose a paring mechanism in HTSC based on resonance of spin (ℏωsf) and charge (εF) energy scales, and apply that concept for explaining unusual behaviors in the overdoped region. We will also discuss modifications of a simple BEC-BCS crossover picture to account for actual situations with additional effects of competing order and phase separation. 
    more » « less