skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modelling thermomechanical ice deformation using an implicit pseudo-transient method (FastICE v1.0) based on graphical processing units (GPUs)
Abstract. Ice sheets lose the majority of their mass through outlet glaciers or ice streams, corridors of fast ice moving multiple orders of magnitude more rapidly than the surrounding ice. The future stability of these corridors of fast-moving ice depends sensitively on the behaviour of their boundaries, namely shear margins, grounding zones and the basal sliding interface, where the stress field is complex and fundamentally three-dimensional. These boundaries are prone to thermomechanical localisation, which can be captured numerically only with high temporal and spatial resolution. Thus, better understanding the coupled physical processes that govern the response of these boundaries to climate change necessitates a non-linear, full Stokes model that affords high resolution and scales well in three dimensions. This paper's goal is to contribute to the growing toolbox for modelling thermomechanical deformation in ice by leveraging graphical processing unit (GPU) accelerators' parallel scalability. We propose FastICE, a numerical model that relies on pseudo-transient iterations to solve the implicit thermomechanical coupling between ice motion and temperature involving shear heating and a temperature-dependent ice viscosity. FastICE is based on the finite-difference discretisation, and we implement the pseudo-time integration in a matrix-free way. We benchmark the mechanical Stokes solver against the finite-element code Elmer/Ice and report good agreement among the results. We showcase a parallel version of FastICE to run on GPU-accelerated distributed memory machines, reaching a parallel efficiency of 99 %. We show that our model is particularly useful for improving our process-based understanding of flow localisation in the complex transition zones bounding rapidly moving ice.  more » « less
Award ID(s):
1739027 1744758
PAR ID:
10144073
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
13
Issue:
3
ISSN:
1991-9603
Page Range / eLocation ID:
955 to 976
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Projections of global sea level depend sensitively on whether Thwaites Glacier, Antarctica, will continue to lose ice rapidly. Prior studies have focused primarily on understanding the evolution of ice velocity and whether the reverse‐sloping bed at Thwaites Glacier could drive irreversible retreat. However, the overall ice flux to the ocean and the possibility of irreversible retreat depend not only on the ice speed but also on the width of the main ice trunk. Here, we complement prior work by focusing specifically on understanding whether the lateral boundaries of the main ice trunk, termed shear margins, might migrate over time. We hypothesize that the shear margins at Thwaites Glacier will migrate on a decadal timescale in response to continued ice thinning and surface steepening. We test this hypothesis by developing a depth‐averaged, thermomechanical free‐boundary model that captures the complex topography underneath the glacier and solves for both the ice velocity and for the position of the shear margins. We find that both shear margins are prone to migration in response to ice thinning with basal strength and surface slope steepening determining their relative motion. We construct four end‐member cases of basal strength that represent different physical properties governing friction at the glacier bed and present two cases of ice thinning to contrast the effects of surface steepening and ice thinning. We test our model by hindcasting historic data and discuss how data from ongoing field campaigns could further be used to test our model. 
    more » « less
  2. This paper develops a tree-topological local mesh refinement (TLMR) method on Cartesian grids for the simulation of bio-inspired flow with multiple moving objects. The TLMR nests refinement mesh blocks of structured grids to the target regions and arrange the blocks in a tree topology. The method solves the time-dependent incompressible flow using a fractional-step method and discretizes the Navier-Stokes equation using a finite-difference formulation with an immersed boundary method to resolve the complex boundaries. When iteratively solving the discretized equations across the coarse and fine TLMR blocks, for better accuracy and faster convergence, the momentum equation is solved on all blocks simultaneously, while the Poisson equation is solved recursively from the coarsest block to the finest ones. When the refined blocks of the same block are connected, the parallel Schwarz method is used to iteratively solve both the momentum and Poisson equations. Convergence studies show that the algorithm is second-order accurate in space for both velocity and pressure, and the developed mesh refinement technique is benchmarked and demonstrated by several canonical flow problems. The TLMR enables a fast solution to an incompressible flow problem with complex boundaries or multiple moving objects. Various bio-inspired flows of multiple moving objects show that the solver can save over 80% computational time, proportional to the grid reduction when refinement is applied. 
    more » « less
  3. Abstract The majority of ice mass loss from Antarctica flows through narrow, fast sliding regions of ice. The lateral boundaries of these regions, termed shear margins, are characterized by lateral shear strains in excess of ∼10−3 yr−1. Shear heating within these margins could warm ice significantly–even to the melting point–but other processes such as lateral advection of cold ice and fabric development compete with this effect. Radar observations can help constrain where temperate ice exists because englacial temperature increases electric conductivity which increases radar attenuation. We utilize the temperature‐dependent attenuation of ice to develop a novel method for constraining englacial temperature in shear margins by combining existing thermal models with very high frequency radar depth‐sounding data. We find evidence supporting temperate shear margins in 18 locations and find evidence for non‐temperate margins in 37 locations, notably in the Amundsen Sea Embayment. 
    more » « less
  4. Shear wave splitting of teleseismic core phases such as SKS is commonly used to constrain mantle seismic anisotropy, a proxy for convective deformation. In plate boundaries, sharp lateral variations of splitting measurements near transform faults are often linked to deformation within a lithospheric shear zone below, but potential seismic waveform effects from heterogeneous structure on small scales may influence the interpretation. Here, we explore possible finite frequency effects on shear wave splitting near fault zones in a fully three‐dimensional anisotropic setting. We find that shear zones wider than 80 km, a scale set by the Fresnel zone, can be clearly detected, but narrower zones are less distinguishable. Near the edge of the shear zone, the combined effect of anisotropy and scattering generates false splitting measurements with large delay times and fast axis orientation approaching the back‐azimuth, a bias which can only be identified when records from different back‐azimuths are analyzed together. This substantiates that back‐azimuthal variations of splitting can arise not just from vertical layering but also lateral changes of anisotropic media. We also test the effects of shear zone edge geometry, epicentral distance, filtering frequency, crustal thickness, and sediment cover. Our study delineates the ability of shear wave splitting to resolve and investigate fault zones, and emphasizes the importance of good azimuthal coverage to correctly interpret observed anisotropy. Based on revisiting previous shear wave splitting and lithospheric deformation studies, we infer that many crustal fault zones are underlain by lithospheric shear zones at least 20 km wide. 
    more » « less
  5. Operational ocean forecasting systems (OOFSs) are complex engines that must execute ocean models with high performance to provide timely products and datasets. Significant computational resources are then needed to run high-fidelity models, and, historically, the technological evolution of microprocessors has constrained data-parallel scientific computation. Today, graphics processing units (GPUs) offer a rapidly growing and valuable source of computing power rivaling the traditional CPU-based machines: the exploitation of thousands of threads can significantly accelerate the execution of many models, ranging from traditional HPC workloads of finite difference, finite volume, and finite element modelling through to the training of deep neural networks used in machine learning (ML) and artificial intelligence. Despite the advantages, GPU usage in ocean forecasting is still limited due to the legacy of CPU-based model implementations and the intrinsic complexity of porting core models to GPU architectures. This review explores the potential use of GPU in ocean forecasting and how the computational characteristics of ocean models can influence the suitability of GPU architectures for the execution of the overall value chain: it discusses the current approaches to code (and performance) portability, from CPU to GPU, including tools that perform code transformation, easing the adaptation of Fortran code for GPU execution (like PSyclone), the direct use of OpenACC directives (like ICON-O), the adoption of specific frameworks that facilitate the management of parallel execution across different architectures, and the use of new programming languages and paradigms. 
    more » « less