skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changing characteristics of runoff and freshwater export from watersheds draining northern Alaska
Abstract. The quantity and quality of river discharge in Arctic regions is influenced by many processes including climate, watershed attributes and, increasingly, hydrological cycle intensification and permafrost thaw. We used a hydrological model to quantify baseline conditions and investigate the changing character of hydrological elements for Arctic watersheds between Utqiagvik (formerly known as Barrow)) and just west of Mackenzie River over the period 1981–2010. A synthesis of measurements and model simulations shows that the region exports 31.9 km3 yr−1 of freshwater via river discharge, with 55.5 % (17.7 km3 yr−1) coming collectively from the Colville, Kuparuk, and Sagavanirktok rivers. The simulations point to significant (p<0.05) increases (134 %–212 % of average) in cold season discharge (CSD) for several large North Slope rivers including the Colville and Kuparuk, and for the region as a whole. A significant increase in the proportion of subsurface runoff to total runoff is noted for the region and for 24 of the 42 study basins, with the change most prevalent across the northern foothills of the Brooks Range. Relatively large increases in simulated active-layer thickness (ALT) suggest a physical connection between warming climate, permafrost degradation, and increasing subsurface flow to streams and rivers. A decline in terrestrial water storage (TWS) is attributed to losses in soil ice that outweigh gains in soil liquid water storage. Over the 30-year period, the timing of peak spring (freshet) discharge shifts earlier by 4.5 d, though the time trend is only marginally (p=0.1) significant. These changing characteristics of Arctic rivers have important implications for water, carbon, and nutrient cycling in coastal environments.  more » « less
Award ID(s):
1832238 1656026
PAR ID:
10144085
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Cryosphere
Volume:
13
Issue:
12
ISSN:
1994-0424
Page Range / eLocation ID:
3337 to 3352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Anthropogenic warming in the Arctic is causing hydrological cycle intensification and permafrost thaw, with implications for flows of water, carbon, and energy from terrestrial biomes to coastal zones. To better understand the likely impacts of these changes, we used a hydrology model driven by meteorological data from atmospheric reanalysis and two global climate models for the period 1980–2100. The hydrology model accounts for soil freeze–thaw processes and was applied across the pan-Arctic drainage basin. The simulations point to greater changes over northernmost areas of the basin underlain by permafrost and to the western Arctic. An acceleration of simulated river discharge over the recent past is commensurate with trends drawn from observations and reported in other studies. Between early-century (2000–2019) and late-century (2080–2099) periods, the model simulations indicate an increase in annual total runoff of 17 %–25 %, while the proportion of runoff emanating from subsurface pathways is projected to increase by 13 %–30 %, with the largest changes noted in summer and autumn and across areas with permafrost. Most notably, runoff contributions to river discharge shift to northern parts of the Arctic Basin that contain greater amounts of soil carbon. Each season sees an increase in subsurface runoff; spring is the only season where surface runoff dominates the rise in total runoff, and summer experiences a decline in total runoff despite an increase in the subsurface component. The greater changes that are seen in areas where permafrost exists support the notion that increased soil thaw is shifting hydrological contributions to more subsurface flow. The manifestations of warming, hydrological cycle intensification, and permafrost thaw will impact Arctic terrestrial and coastal environments through altered river flows and the materials they transport. 
    more » « less
  2. Abstract Observations show increases in river discharge to the Arctic Ocean especially in winter over the last decades but the physical mechanisms driving these changes are not yet fully understood. We hypothesize that even in the absence of a precipitation increase, permafrost degradation alone can lead to increased annual river runoff. To test this hypothesis we perform 12 millennium-long simulations over an idealized hypothetical watershed (1 km 2 ) using a distributed, physically based water balance model (Water flow and Balance Simulation Model, WaSiM). The model is forced by both a hypothetical warming defined by an air temperature increase of 7.5 ∘ C over 100 years, and a corresponding cooling scenario. To assess model sensitivity we vary soil saturated hydraulic conductivity and lateral subsurface flow configuration. Under the warming scenario, changes in subsurface water transport due to ground temperature changes result in a 7%–14% increase in annual runoff accompanied by a 6%–20% decrease in evapotranspiration. The increase in runoff is most pronounced in winter. Hence, the simulations demonstrate that changes in permafrost characteristics due to climate warming and associated changes in evapotranspiration provide a plausible mechanism for the observed runoff increases in Arctic watersheds. In addition, our experiments show that when lateral subsurface moisture transport is not included, as commonly done in global-scale Earth System Models, the equilibrium water balance in response to the warming or cooling is similar to the water balance in simulations where lateral subsurface transport is included. However, the transient changes in water balance components prior to reaching equilibrium differ greatly between the two. For example, for high saturated hydraulic conductivity only when lateral subsurface transport is considered, a period of decreased runoff occurs immediately after the warming. This period is characterized by a positive change in soil moisture storage caused by the soil moisture deficit developed during prior cooling. 
    more » « less
  3. In Arctic landscapes, watershed processes are tightly linked to cold temperatures, permafrost, snow, and strong seasonality in precipitation, storage, and runoff. Thus, a rapidly changing Arctic climate will affect watershed function and result in changes to the transport of water, sediment, and nutrients to downstream aquatic and marine ecosystems. There is increasing evidence of hydrologic intensification of the Arctic terrestrial water cycle, fueling inquiry into the hydrologic responses that integrate the varying climate and landscape units. Key to understanding these complex watershed processes is long-term hydrologic monitoring in Arctic Alaska. The goal of this study is to operate and maintain hydroclimate observation stations in the Kuparuk River basin to obtain continuous datasets for the community of Arctic stakeholders. Imnavait Creek is a small (2.2 square kilometers) watershed located in the northern foothills region of Brooks Range and the headwaters of the Kuparuk River. The Kuparuk River flows north through the foothills and coastal plain of Alaska, before discharging into the Beaufort Sea. The gauging station at Imnavait Creek is approximately 3 kilometers south of the Dalton Highway, near MP (milepost) 291. Imnavait Creek parallels the Upper Kuparuk River and enters the Kuparuk River 12 kilometers north of the Water and Environmental Research Center (WERC) Upper Kuparuk gauging station. Streamflow at Imnavait Creek persists throughout the summer months, but during the winter months flow is non-existent. Streamflow in Imnavait Creek has been measured by researchers at the University of Alaska Fairbanks (UAF) WERC from 1985 to 2023. This data package contains continuous streamflow data collected by researchers from University of Alaska Fairbanks from 2018-2023. For UAF-WERC historical discharge data for Imnavait Creek (1985-2017) see the data package at https://arcticdata.io/catalog/view/doi%3A10.18739%2FA2K649S9D. 
    more » « less
  4. Climate warming in the Arctic is thawing previously frozen soil (permafrost). Permafrost thaw alters landscape hydrology and increases weathering rates, which can increase the delivery of solutes to adjacent waters. Long-term river monitoring of the Kuparuk River (North Slope, Alaska, USA) confirms significant increases in solutes that are indicative of thawing permafrost. However, there is no evidence of an increase in total phosphorus (TP) or soluble reactive phosphorus (SRP), the nutrient that limits primary production in this and similar rivers in the region. Here, we show that Mehlich-3 extractable iron (Fe) and aluminum (Al) impart high P biogeochemical sorption capacities across a range of landscape features that we would expect to promote lateral movement of water and solutes to headwater streams in our study watershed. Reanalysis of a recently published pan-Arctic soils database suggests that this high P sorption capacity could be common in other parts of the Arctic region. We conclude that while warming-induced permafrost thaw may increase the potential for P mobility in our watershed, simultaneous increases in pedogenic secondary Fe and Al minerals may continue to retain P in these soils and limit biological productivity in the adjacent river. We suggest that similar interactions may occur in other areas of the Arctic where comparable biogeochemical conditions prevail. 
    more » « less
  5. Abstract The climate of the Arctic region is changing rapidly, with important implications for permafrost, vegetation communities, and transport of solutes by streams and rivers to the Arctic Ocean. While research on Arctic streams and rivers has accelerated in recent years, long‐term records are relatively rare compared to temperate and tropical regions. We began monitoring the upper Kuparuk River in 1983 as part of a long‐term, low‐level, whole‐season phosphorus enrichment of a 4–6 km experimental reach, which was subsequently incorporated into the Arctic Long‐Term Ecological Research (Arctic LTER) programme. The phosphorus enrichment phase of the Upper Kuparuk River Experiment (UKRE) ran continuously for 34 seasons, fundamentally altering the community structure and function of the Fertilized reach. The objectives of this paper are to (a) update observations of the environmental conditions in the Kuparuk River region as revealed by long‐term, catchment‐level monitoring, (b) compare long‐term trends in biogeochemical characteristics of phosphorus‐enriched and reference reaches of the Kuparuk River, and (c) report results from a new ‘ReFertilization’ experiment. During the UKRE, temperature and discharge did not change significantly, though precipitation increased slightly. However, the UKRE revealed unexpected community state changes attributable to phosphorus enrichment (e.g., appearance of colonizing bryophytes) and long‐term legacy effects of these state changes after cessation of the phosphorus enrichment. The UKRE also revealed important biogeochemical trends (e.g., increased nitrate flux and benthic C:N, decreased DOP flux). The decrease in DOP is particularly notable in that this may be a pan‐Arctic trend related to permafrost thaw and exposure to new sources of iron that reduce phosphorus mobility to streams and rivers. The trends revealed by the UKRE would have been difficult or impossible to identify without long‐term, catchment level research and may have important influences on connections between Arctic headwater catchments and downstream receiving waters, including the Arctic Ocean. 
    more » « less