skip to main content


Title: SAGE-RA: A Reference Architecture to Advance the Teaching and Learning of Computational Thinking
Rapid technological advances and the increasing number of students in Southeast Asian nations present a difficult challenge: how should schools adequately equip teachers with the right tools to effectively teach Computational Thinking, when the demand for such teachers outstrips their readiness and availability? To address this challenge, we present the SAGE reference architecture: an architecture for a learning environment for elementary, middle-school and high-school students based on the Scratch programming language. We synthesize research in the domains of game-based learning, implicit assessments, intelligent tutoring systems, and learning conditions, and suggest a teacher-assisting instructional platform that provides automated and personalized machine learning recommendations to students as they learn Computational Thinking. We discuss the uses and components of this system that collects, categorizes, structures, and refines data generated from students’ and teachers’ interactions, and also facilitates personalized student learning through: 1) predictions of students’ distinct programming behaviors via employment of clustering and classification models, 2) automation of aspects of formative assessment formulations and just-in- time feedback delivery, and 3) utilization of item-based and user-based collaborative filtering to suggest customized learning paths. The proposed reference architecture consists of several architectural components, with explanations on their necessity and interactions to foster future replications or adaptations in similar educational contexts.  more » « less
Award ID(s):
1842456 1815494 1563555
NSF-PAR ID:
10144174
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Conference on Embedding Artificial Intelligence (AI) in Education Policy and Practice for Southeast Asia
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Next Generation Science Standards [1] recognized evidence-based argumentation as one of the essential skills for students to develop throughout their science and engineering education. Argumentation focuses students on the need for quality evidence, which helps to develop their deep understanding of content [2]. Argumentation has been studied extensively, both in mathematics and science education but also to some extent in engineering education (see for example [3], [4], [5], [6]). After a thorough search of the literature, we found few studies that have considered how teachers support collective argumentation during engineering learning activities. The purpose of this program of research was to support teachers in viewing argumentation as an important way to promote critical thinking and to provide teachers with tools to implement argumentation in their lessons integrating coding into science, technology, engineering, and mathematics (which we refer to as integrative STEM). We applied a framework developed for secondary mathematics [7] to understand how teachers support collective argumentation in integrative STEM lessons. This framework used Toulmin’s [8] conceptualization of argumentation, which includes three core components of arguments: a claim (or hypothesis) that is based on data (or evidence) accompanied by a warrant (or reasoning) that relates the data to the claim [9], [8]. To adapt the framework, video data were coded using previously established methods for analyzing argumentation [7]. In this paper, we consider how the framework can be applied to an elementary school teacher’s classroom interactions and present examples of how the teacher implements various questioning strategies to facilitate more productive argumentation and deeper student engagement. We aim to understand the nature of the teacher’s support for argumentation—contributions and actions from the teacher that prompt or respond to parts of arguments. In particular, we look at examples of how the teacher supports students to move beyond unstructured tinkering (e.g., trial-and-error) to think logically about coding and develop reasoning for the choices that they make in programming. We also look at the components of arguments that students provide, with and without teacher support. Through the use of the framework, we are able to articulate important aspects of collective argumentation that would otherwise be in the background. The framework gives both eyes to see and language to describe how teachers support collective argumentation in integrative STEM classrooms. 
    more » « less
  2. null (Ed.)
    Developing narrative and computational thinking skills is crucial for K-12 student learning. A growing number of K-12 teachers are utilizing digital storytelling, where students create short narratives around a topic, as a means of creating motivating problem-solving activities for a variety of domains, including history and science. At the same time, there is increasing awareness of the need to engage K-12 students in computational thinking, including elementary school students. Given the challenges that the syntax of text-based programming languages poses for even novice university-level learners, block-based programming languages have emerged as an effective tool for introducing computational thinking to elementary-level students. Leveraging the unique affordances of narrative and computational thinking offers significant potential for student learning; however, integrating them presents significant challenges. In this paper, we describe initial work toward solving this problem by introducing an approach to block-based programming for interactive storytelling to engage upper elementary students (ages 9 to 11) in computational thinking and narrative skill development. Leveraging design principles and best practices from prior research on elementary-grade block-based programming and digital storytelling, we propose a set of custom blocks enabling learners to create interactive narratives. We describe both the process used to derive the custom blocks, including their alignment with elements of interactive narrative and with specific computational thinking curricular goals, as well as lessons learned from students interacting with a prototype learning environment utilizing the block-based programming approach. 
    more » « less
  3. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  4. null (Ed.)
    Elementary school teachers are increasingly looking to incorporate computational thinking (CT) into their practice. Unlike middle and high school where CT is often integrated into a single subject, elementary school teachers have the unique opportunity to integrate CT across multiple content areas. However, there is little research on the in-platform supports elementary teachers need to accomplish this integration successfully. To investigate this integration, we are iteratively developing a narrative-centered learning environment to facilitate learning outcomes in physical science via the creation of digital narratives that elicit CT. The learning environment enables students to use their science understanding to propose a solution to a problem through story creation using custom narrative-centered programming blocks that set a story’s scene, selects characters, and controls the story’s unfolding dialogue and actions. We have engaged with four upper elementary teachers to gather their perspectives on the usability of the learning environment and input on future design iterations. In this paper, we report results from a focus group study with the teachers that examines their perceptions on whether and how the learning environment facilitates story creation and if the learning environment provides learning supports for integrated science, language arts, and CT. Initial results suggest that teachers found the environment to be engaging and supportive of students’ creativity. 
    more » « less
  5. A literature review revealed that students learning computational thinking via Scratch often require substantial teacher support. We surveyed grade 6-9 teachers to learn their perceptions of student engagement with computational thinking (CT) and how well their needs are met by existing CT learning systems. The results led us to extend the trend of balancing Scratch’s agency with structure to better serve learners and reduce burden on teachers aiming to learn and teach CT. In this paper, we review architecture and implementation strategies developed to integrate Parsons Programming Puzzles (PPPs) with Scratch, and then analyze their effects on adults, who crucially influence the education of their children. The results from our pilot study suggest PPPs catalyze CT motivation, reduce extraneous cognitive load, and increase learning efficiency without jeopardizing performance on transfer tasks. 
    more » « less