Spatial processing by receptive fields is a core property of the visual system. However, it is unknown how spatial processing in high-level regions contributes to recognition behavior. As face inversion is thought to disrupt typical holistic processing of information in faces, we mapped population receptive fields (pRFs) with upright and inverted faces in the human visual system. Here we show that in face-selective regions, but not primary visual cortex, pRFs and overall visual field coverage are smaller and shifted downward in response to face inversion. From these measurements, we successfully predict the relative behavioral detriment of face inversion at different positions in the visual field. This correspondence between neural measurements and behavior demonstrates how spatial processing in face-selective regions may enable holistic perception. These results not only show that spatial processing in high-level visual regions is dynamically used towards recognition, but also suggest a powerful approach for bridging neural computations by receptive fields to behavior.
more »
« less
Visual Psychophysics for Making Face Recognition Algorithms More Explainable
Abstract. Scientific fields that are interested in faces have developed their own sets of concepts and procedures for understanding how a tar- get model system (be it a person or algorithm) perceives a face under varying conditions. In computer vision, this has largely been in the form of dataset evaluation for recognition tasks where summary statistics are used to measure progress. While aggregate performance has continued to improve, understanding individual causes of failure has been difficult, as it is not always clear why a particular face fails to be recognized, or why an impostor is recognized by an algorithm. Importantly, other fields studying vision have addressed this via the use of visual psychophysics: the controlled manipulation of stimuli and careful study of the responses they evoke in a model system. In this paper, we suggest that visual psychophysics is a viable methodology for making face recognition algo- rithms more explainable. A comprehensive set of procedures is developed for assessing face recognition algorithm behavior, which is then deployed over state-of-the-art convolutional neural networks and more basic, yet still widely used, shallow and handcrafted feature-based approaches.
more »
« less
- Award ID(s):
- 1738479
- PAR ID:
- 10144516
- Date Published:
- Journal Name:
- European Conference on Computer Vision 2018
- Volume:
- 15
- Page Range / eLocation ID:
- 10.1007/978-3-030-01267-0
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Agaian, Sos S.; Jassim, Sabah A. (Ed.)Face recognition technologies have been in high demand in the past few decades due to the increase in human-computer interactions. It is also one of the essential components in interpreting human emotions, intentions, facial expressions for smart environments. This non-intrusive biometric authentication system relies on identifying unique facial features and pairing alike structures for identification and recognition. Application areas of facial recognition systems include homeland and border security, identification for law enforcement, access control to secure networks, authentication for online banking and video surveillance. While it is easy for humans to recognize faces under varying illumination conditions, it is still a challenging task in computer vision. Non-uniform illumination and uncontrolled operating environments can impair the performance of visual-spectrum based recognition systems. To address these difficulties, a novel Anisotropic Gradient Facial Recognition (AGFR) system that is capable of autonomous thermal infrared to visible face recognition is proposed. The main contribution of this paper includes a framework for thermal/fused-thermal-visible to visible face recognition system and a novel human-visual-system inspired thermal-visible image fusion technique. Extensive computer simulations using CARL, IRIS, AT&T, Yale and Yale-B databases demonstrate the efficiency, accuracy, and robustness of the AGFR system. Keywords: Infrared thermal to visible facial recognition, anisotropic gradient, visible-to-visible face recognition, nonuniform illumination face recognition, thermal and visible face fusion methodmore » « less
-
Face recognition with wearable items has been a challenging task in computer vision and involves the problem of identifying humans wearing a face mask. Masked face analysis via multi-task learning could effectively improve performance in many fields of face analysis. In this paper, we propose a unified framework for predicting the age, gender, and emotions of people wearing face masks. We first construct FGNET-MASK, a masked face dataset for the problem. Then, we propose a multi-task deep learning model to tackle the problem. In particular, the multi-task deep learning model takes the data as inputs and shares their weight to yield predictions of age, expression, and gender for the masked face. Through extensive experiments, the proposed framework has been found to provide a better performance than other existing methods.more » « less
-
Photo Sleuth: Combining Collective Intelligence and Computer Vision to Identify Historical PortraitsIdentifying people in photographs is a critical task in a wide variety of domains, from national security [7] to journalism [14] to human rights investigations [1]. The task is also fundamentally complex and challenging. With the world population at 7.6 billion and growing, the candidate pool is large. Studies of human face recognition ability show that the average person incorrectly identifies two people as similar 20–30% of the time, and trained police detectives do not perform significantly better [11]. Computer vision-based face recognition tools have gained considerable ground and are now widely available commercially, but comparisons to human performance show mixed results at best [2,10,16]. Automated face recognition techniques, while powerful, also have constraints that may be impractical for many real-world contexts. For example, face recognition systems tend to suffer when the target image or reference images have poor quality or resolution, as blemishes or discolorations may be incorrectly recognized as false positives for facial landmarks. Additionally, most face recognition systems ignore some salient facial features, like scars or other skin characteristics, as well as distinctive non-facial features, like ear shape or hair or facial hair styles. This project investigates how we can overcome these limitations to support person identification tasks. By adjusting confidence thresholds, users of face recognition can generally expect high recall (few false negatives) at the cost of low precision (many false positives). Therefore, we focus our work on the “last mile” of person identification, i.e., helping a user find the correct match among a large set of similarlooking candidates suggested by face recognition. Our approach leverages the powerful capabilities of the human vision system and collaborative sensemaking via crowdsourcing to augment the complementary strengths of automatic face recognition. The result is a novel technology pipeline combining collective intelligence and computer vision. We scope this project to focus on identifying soldiers in photos from the American Civil War era (1861– 1865). An estimated 4,000,000 soldiers fought in the war, and most were photographed at least once, due to decreasing costs, the increasing robustness of the format, and the critical events separating friends and family [17]. Over 150 years later, the identities of most of these portraits have been lost, but as museums and archives increasingly digitize and publish their collections online, the pool of reference photos and information has never been more accessible. Historians, genealogists, and collectors work tirelessly to connect names with faces, using largely manual identification methods [3,9]. Identifying people in historical photos is important for preserving material culture [9], correcting the historical record [13], and recognizing contributions of marginalized groups [4], among other reasons.more » « less
-
null (Ed.)Context is of fundamental importance to both human and machine vision; e.g., an object in the air is more likely to be an airplane than a pig. The rich notion of context incorporates several aspects including physics rules, statistical co-occurrences, and relative object sizes, among others. While previous work has focused on crowd-sourced out-of-context photographs from the web to study scene context, controlling the nature and extent of contextual violations has been a daunting task. Here we introduce a diverse, synthetic Out-of-Context Dataset (OCD) with fine-grained control over scene context. By leveraging a 3D simulation engine, we systematically control the gravity, object co-occurrences and relative sizes across 36 object categories in a virtual household environment. We conducted a series of experiments to gain insights into the impact of contextual cues on both human and machine vision using OCD. We conducted psychophysics experiments to establish a human benchmark for out-of-context recognition, and then compared it with state-of-the-art computer vision models to quantify the gap between the two. We propose a context-aware recognition transformer model, fusing object and contextual information via multi-head attention. Our model captures useful information for contextual reasoning, enabling human-level performance and better robustness in out-of-context conditions compared to baseline models across OCD and other out-of-context datasets. All source code and data are publicly available at https://github.com/kreimanlab/WhenPigsFlyContextmore » « less
An official website of the United States government

