skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Movements of aquatic mesopredators within the Shark River estuary (FCE LTER), Everglades National Park, South Florida, USA, February 2012 - ongoing
In South Florida, the allocation of the limited freshwater supply is of constant debate. Stakeholder groups for freshwater include agriculture, South Florida populations, and the natural environment and the ecosystem services that they provide. One ecosystem service invaluable to South Florida is the provisioning of coastal recreational fisheries. This ecosystem service generates approximately 8 billion dollars in angler expenditures in Florida alone. However, the interplay between the provisioning of fisheries and the allocation and input of freshwater to coastal systems is largely unknown. One such way that recreationally important fishes could be impacted by changes in freshwater inputs to coastal systems is through the availability of food. Previous research has shown that seasonal rainfall patterns and freshwater management create spikes in prey availability for important recreational fishes such as Common Snook (Centropomus undecimalis) and Largemouth Bass (Micropterus salmoides). These prey pulses are restricted to the most inland reaches of the estuary. However, two important questions remain unanswered: 1) How far away do snook and bass move to take advantage of this prey subsidy? 2) Do these spikes in prey availability increase the reproductive output of snook? In order to answer these questions, we use acoustic telemetry to track the movements of key recreational fish species (Common Snook and Largemouth Bass) over multiple years (2012 – current) in the Shark River Estuary, Everglades National Park. Data provided by this study will be the first step in quantifying the importance of freshwater inflows to coastal fisheries. From a science perspective our research will provide valuable insight to how highly mobile species respond to pulses of prey across a patchy landscape, and how these temporary highly abundant resources will act to boost consumer populations. The value of pulsed resources to consumers have been identified as an important information gap in population ecology.  more » « less
Award ID(s):
2025954
PAR ID:
10643721
Author(s) / Creator(s):
Publisher / Repository:
Environmental Data Initiative
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The patchy nature of landscapes drives variation in the extent of ecological processes across space. This spatial ecology is critical to our understanding of organism-environmental interactions and conservation, restoration, and resource management efforts. In fisheries, incorporation of the spatial ecology of fishes remains limited, despite its importance to fishery assessment and management. This study quantified the effects of variation in headwater river stage, as an indicator of freshwater inflow, on the distribution and movement of a valuable recreational fishery species in Florida, common snook (Centropomus undecimalis). The hypothesis tested was that variation in river stage caused important habitat shifts and changes in the movement behavior of Snook. A combination of electrofishing and acoustic telemetry was used to quantify the distribution and movement patterns of snook in the upper Shark River Estuary, Everglades National Park. Negative relationships with river stage were found for all three variables measured: electrofishing catch per unit effort, the proportion of detections by upstream acoustic receivers, and movement rates. Snook were up to 5.8 times more abundant, were detected 2.3 times more frequently, and moved up to 4 times faster at lower river stages associated with seasonal drawdowns in water level. These findings show how seasonal drawdowns result in local aggregations of consumers, largely driven by improved foraging opportunities, and emphasize the importance of maintaining the natural variance in managed hydrological regimes. Results also highlight the importance of understanding the nature of flow-ecology relationships, especially given projected changes in freshwater availability with climate change. 
    more » « less
  2. Numerous species face redistribution and compression of habitat due to climate change. Compounded with anthropogenic stressors, coastal systems are among those experiencing the largest shifts in distribution and degradation of habitats. We coupled long-term movement and environmental data to assess how a freshwater species responds to changes in a coastal refuge habitat to quantify distributional changes, identify key environmental variables, and provide restoration targets. Salinity, variation in salinity, and stage of surrounding marsh habitat were the most important variables driving Florida bass (Micropterus salmoides) occurrence in the estuary. Salinity below 8.7 ppt had the largest positive effect on Florida bass occurrence, while low levels of daily variation in salinity (< 1.3 SD) and marsh stages between 11.4 and 27.7 cm were associated with an increased probability of Florida bass occurrence. Years with above average freshwater inputs that shifted mesohaline boundaries downstream generated 15.3 km2 of both core and conditional habitat for Florida bass, average conditions generated 4.4 km2 of core and conditional habitat, whereas dry conditions compressed Florida bass habitat to 1.7 km2. These results suggest that varying environmental scenarios can shift the amount of suitable habitat available for freshwater species using conditional coastal habitats. Our study provides salinity and marsh depth thresholds that offer actionable management targets to maximize the presence of Florida bass in coastal rivers, with population and fishing quality benefits. Climate change will likely result in large-scale reductions of critical dry season habitat for these species, while restoration efforts and adaptive management can bolster the resiliency of these habitats. 
    more » « less
  3. Abstract In aquatic systems, refuge habitats increase resistance to drying events and maintain populations in disturbed environments. However, reduced water availability and altered flow regimes threaten the function of these habitats. We conducted a capture–mark–recapture study, integrating angler citizen science. Our objectives were to quantify variation in survival of Florida Largemouth BassMicropterus salmoides floridanusin a coastal refuge habitat across seasonal hydrological periods and over 4 years of varying drying severity and to determine the contribution of angler sampling to improving capture probabilities. Apparent survival of Florida Largemouth Bass in the coastal Everglades was highest in wet and drying periods and lowest in dry and reflooding periods. Interannual survival was closely tied to the length of upstream marsh drying, with the lowest observed survival (0.21) during a drought year. The inclusion of angler sampling improved recapture probabilities, suggesting that angler data can supplement standardized electrofishing sampling. Findings show that during short drying events Florida Largemouth Bass survival can be relatively high, with implications for Everglades restoration. Understanding the ability of refuge habitats to buffer populations from drying disturbance is a key component for conservation and restoration, particularly under climate change scenarios. 
    more » « less
  4. The recreational flats fishery (bonefish, tarpon, and permit) in South Florida is economically and culturally important and has declined recently for unknown reasons. Biscayne Bay is a shallow subtropical lagoon system with a flats fishery bordered by a large urban center. The Bay also supports commercial fisheries, including the pink shrimp bait and food fisheries. These two shrimp fisheries represent Biscayne Bay’s most valuable fisheries, but how these fisheries interact with the recreational flats fishery is relatively unknown. We conducted a literature review to identify the potential direct and indirect effects of the two shrimp fisheries on the recreational flats fishery in the Bay. Our review found that there are likely minimal impacts of the Biscayne Bay pink shrimp fisheries on the flats fishery in Biscayne Bay since (a) the species are not caught by shrimping gear, (b) the shrimp fishery removes less than 10% of the Bay’s shrimp population, and (c) damage to seagrass is minimal (but hardbottom is damaged). Yet, the potential for indirect prey removal cannot be ruled out and requires quantification with additional diet data, food web, and mass balance models. 
    more » « less
  5. Chronic environmental change threatens biodiversity, but acute disturbance events present more rapid and immediate threats. In 2010, a cold snap across south Florida had wide-ranging impacts, including negative effects on recreational fisheries, agriculture, and ecological communities. Here, we use acoustic telemetry and historical longline monitoring to assess the long-term implications of this event on juvenile bull sharks Carcharhinus leucas in the Florida Everglades. Despite the loss of virtually all individuals (ca. 90%) within the Shark River Estuary during the cold snap, the catch per unit effort (CPUE) of age 0 sharks on longlines recovered through recruitment within 6-8 mo of the event. Acoustic telemetry revealed that habitat use patterns of age 0-2 sharks reached an equilibrium in 4-6 yr. In contrast, the CPUE and habitat use of age 3 sharks required 5-7 yr to resemble pre-cold snap patterns. Environmental conditions and predation risk returned to previous levels within 1 yr of the cold snap, but abundances of some prey species remained depressed for several years. Reduced prey availability may have altered the profitability of some microhabitats after the cold snap, leading to more rapid ontogenetic shifts to marine waters among sharks for several years. Accelerated ontogenetic shifts coupled with inter-individual behavioral variability of bull sharks likely led to a slower recovery rate than predicted based on overall shark CPUE. While intrinsic variation driven by stochasticity in dynamic ecosystems may increase the resistance of species to chronic and acute disturbance, it may also increase recovery time in filling the diversity of niches occupied prior to disturbance if resistive capacity is exceeded. 
    more » « less