skip to main content

Title: Low-temperature synthesis of superconducting iron selenide using a triphenylphosphine flux
Many functional materials have relatively low decomposition temperatures ( T ≤ 400 °C), which makes their synthesis challenging using conventional high-temperature solid-state chemistry. Therefore, non-conventional techniques such as metathesis, hydrothermal, and solution chemistry are often employed to access low-temperature phases; the discovery of new chemistries is needed to expand access to these phases. This contribution discusses the use of triphenylphosphine (PPh 3 ) as a molten flux to synthesize superconducting iron selenide (Fe 1+δ Se) at low temperature ( T = 325 °C). Powder X-ray diffraction and magnetism measurements confirm the successful formation of superconducting iron selenide while nuclear magnetic resonance spectroscopy and in situ X-ray diffraction show that the formation of superconducting FeSe at low temperatures is enabled by an adduct between the triphenylphosphine and selenium. Exploration of the Fe–Se–PPh 3 phase space indicates that the PPh 3 –Se adduct effectively reduces the chemical potential of the selenium at high concentrations of triphenylphosphine. This contribution demonstrates that the use of a poorly-solvating yet reactive flux has the potential to enable the synthesis of new low-temperature phases of solid materials.
Authors:
; ; ; ;
Award ID(s):
1653863
Publication Date:
NSF-PAR ID:
10144940
Journal Name:
Dalton Transactions
Volume:
48
Issue:
43
Page Range or eLocation-ID:
16298 to 16303
ISSN:
1477-9226
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The superconducting critical temperature T c of intercalated iron-selenide superconductor (Li,Fe)OHFeSe (FeSe11111) can be increased to 42 from 8 K of bulk FeSe. It shows remarkably similar electronic properties as the high- T c monolayer FeSe and provides a bulk counterpart to investigate the origin of enhanced superconductivity. Unraveling the nature of excitations is crucial for understanding the pairing mechanism in high- T c iron selenides. Here we use resonant inelastic x-ray scattering (RIXS) to investigate the excitations in FeSe11111. Our high-quality data exhibit several Raman-like excitations, which are dispersionless and isotropic in momentum transfer in both superconducting 28 K and 42 K samples. Using atomic multiplet calculations, we assign the low-energy ~0.3 and 0.7 eV Raman peaks as local e g  −  e g and e g  −  t 2 g orbital excitations. The intensity of these two features decreases with increasing temperature, suggesting a dominating contribution of the orbital fluctuations. Our results highlight the importance of the orbital degree of freedom for high- T c iron selenides.
  2. Copper-antimony-sulfide compounds have desirable earth-abundant compositions for application in renewable energy technologies, such as solar energy and waste heat recycling. These compounds can be synthesized by bottom-up, solution-phase techniques that are more energy and time efficient than conventional solid-state methods. Solution-phase methods typically produce nanostructured materials, which adds another dimension to control optical, electrical, and thermal material properties. This study focuses on a modified-polyol, solution-phase synthesis for tetrahedrite (Cu 12 Sb 4 S 13 ), a promising thermoelectric material with potential also for photovoltaic applications. To dope the tetrahedrite and tune material properties, the utility of the modified polyol synthetic approach has been demonstrated as a strategy to produce phase-pure tetrahedrite that incorporates transition metal (Fe, Co, Ni, Zn, Ag) dopants for Cu, Te dopant for Sb, and Se for S. Six of these reported tetrahedrite compounds have not previously been made by solution-phase methods. For the bottom-up formation of the tetrahedrite nanomaterials, the evolution of the chemical phases has been determined by an investigation of the reaction progress as a function of temperature and time. Digenite (Cu 1.8 S), covellite (CuS), and famatinite (Cu 3 SbS 4 ) are identified as key intermediates and are consistently observed for bothmore »undoped and doped tetrahedrites. The effect of nanostructuring and doping tetrahedrite on thermal properties has been investigated. It was found that nanostructured undoped tetrahedrite has reduced thermal stability relative to samples made by solid-state methods, while the addition of dopants for Cu increased the thermal stability of the material. Crystallinity, composition, and nanostructure of products and intermediates were characterized by powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Thermal properties were investigated by differential scanning calorimetry and thermal gravimetric analysis. This synthetic study with thermal property analysis demonstrates the potential of the modified polyol method to produce tetrahedrite and other copper-antimony-sulfide compounds for thermoelectric and photovoltaic applications.« less
  3. As part of an effort to characterize clusters and intermediate phases likely to be encountered along solution reaction pathways that produce iron and aluminum oxide-hydroxides from Fe and Al precursors, the complete structure of Al10O14(OH)2 (akdalaite) was determined from a combination of single-crystal X-ray diffraction (SC-XRD) data collected at 100 K to define the Al and O positions, and solid-state nuclear magnetic resonance (NMR) and neutron powder diffraction (NPD) data collected at room temperature (~300 K) to precisely determine the nature of hydrogen in the structure. Two different synthesis routes produced different crystal morphologies. Using an aluminum oxyhydroxide floc made from mixing AlCl3 and 0.48 M NaOH, the product had uniform needle morphology, while using nanocrystalline boehmite (Vista Chemical Company Catapal D alumina) as the starting material produced hexagonal plates. Akdalaite crystallizes in the space group P63mc with lattice parameters of a = 5.6244(3) Å and c = 8.8417(3) Å (SC-XRD) and a = 5.57610(2) Å and c = 8.77247(6) Å (NPD). The crystal structure features Al13O40 Keggin clusters. The structural chemistry of akdalaite is nonideal but broadly conforms to that of ferrihydrite, the nanomineral with which it is isostructural.
  4. Redox-active multimetallic platforms with synthetically addressable and hemilabile active sites are attractive synthetic targets for mimicking the reactivity of enzymatic co-factors toward multielectron transformations. To this end, a family of ternary clusters featuring three edge metal sites anchored on a [Co 6 Se 8 ] multimetallic support via amidophosphine ligands are a promising platform. In this report, we explore how small changes in the stereoelectronic properties of these ligands alter [Co 6 Se 8 ] metalloligand formation, but also substrate binding affinity and strength of the edge/support interaction in two new ternary clusters, M 3 Co 6 Se 8 L 6 (M = Zn, Fe; L (−) = Ph 2 PN (−)i Pr). These clusters are characterized extensively using a range of methods, including single crystal X-ray diffraction, electronic absorption spectroscopy and cyclic voltammetry. Substrate binding studies reveal that Fe 3 Co 6 Se 8 L 6 resists coordination of larger ligands like pyridine or tetrahydrofuran, but binds the smaller ligand CN t Bu. Additionally, investigations into the synthesis of new [Co 6 Se 8 ] metalloligands using two aminophosphines, Ph 2 PN(H) i Pr (L H ) and i Pr 2 PN(H) i Pr, led to the synthesis andmore »characterization of Co 6 Se 8 L H 6 , as well as the smaller clusters Co 4 Se 2 (CO) 6 L H 4 , Co 3 Se(μ 2 -PPh 2 )(CO) 4 L H 3 , and [Co(CO) 3 ( i Pr 2 PN(H) i Pr)] 2 . Cumulatively, this study expands our understanding on the effect of the stereoelectronic properties of aminophosphine ligands in the synthesis of cobalt chalcogenide clusters, and, importantly on modulating the push–pull dynamic between the [Co 6 Se 8 ] support, the edge metals and incoming coordinating ligands in ternary M 3 Co 6 Se 8 L 6 clusters.« less
  5. The mineral apatite, Ca10(PO4)6(F,OH,Cl)2, incorporates sulfur (S) during crystallization from S-bearing hydrothermal fluids and silicate melts. Our previous studies of natural and experimental apatite demonstrate that the oxidation state of S in apatite varies systematically as a function of oxygen fugacity (fO2). The S oxidation states –1 and –2 were quantitatively identified in apatite crystallized from reduced, S-bearing hydrothermal fluids and silicate melts by using sulfur K-edge X‑ray absorption near-edge structure spectroscopy (S-XANES) where S6+/ΣS in apatite increases from ~0 at FMQ-1 to ~1 at FMQ+2, where FMQ refers to the fayalite-magnetite-quartz fO2 buffer. In this study, we employ quantum-mechanical calculations to investigate the atomistic structure and energetics of S(-I) and S(-II) incorporated into apatite and elucidate incorporation mechanisms. One S(-I) species (disulfide, S22−) and two S(-II) species (bisulfide, HS−, and sulfide, S2−) are investigated as possible forms of reduced S species in apatite. In configuration models for the simulation, these reduced S species are positioned along the c-axis channel, originally occupied by the column anions F, Cl, and OH in the end-member apatites. In the lowest-energy configurations of S-incorporated apatite, disulfide prefers to be positioned halfway between the mirror planes at z = 1/4 and 3/4. In contrast, themore »energy-optimized bisulfide is located slightly away from the mirror planes by ~0.04 fractional units in the c direction. The energetic stability of these reduced S species as a function of position along the c-axis can be explained by the geometric and electrostatic constraints of the Ca and O planes that constitute the c-axis channel. The thermodynamics of incorporation of disulfide and bisulfide into apatite are evaluated by using solid-state reaction equations where the apatite host and a solid S-bearing source phase (pyrite and Na2S2(s) for disulfide; troilite and Na2S(s) for sulfide) are the reactants, and the S-incorporated apatite and an anion sink phase are the products. The Gibbs free energy (ΔG) is lower for incorporation with Na-bearing phases than with Fe-bearing phases, which is attributed to the higher energetic stability of the iron sulfide minerals as a source phase for S than the sodium sulfide phases. The thermodynamics of incorporation of reduced S are also evaluated by using reaction equations involving dissolved disulfide and sulfide species [HnS2(aq)(2–n) and HnS(aq)(2–n); n = 0, 1, and 2] as a source phase. The ΔG of S-incorporation increases for fluorapatite and chlorapatite and decreases for hydroxylapatite as these species are protonated (i.e., as n changes from 0 to 2). These thermodynamic results demonstrate that the presence of reduced S in apatite is primarily controlled by the chemistry of magmatic and hydrothermal systems where apatite forms (e.g., an abundance of Fe; solution pH). Ultimately, our methodology developed for evaluating the thermodynamics of S incorporation in apatite as a function of temperature, pH, and composition is highly applicable to predicting the trace and volatile element incorporation in minerals in a variety of geological systems. In addition to solid-solid and solid-liquid equilibria treated here at different temperatures and pH, the methodology can be easily extended also to different pressure conditions by just performing the quantum-mechanical calculations at elevated pressures.« less