skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Space-time dynamics of electricity markets incentivize technology decentralization
We study economic incentives provided by space-time dynamics of day-ahead and real-time electricity markets. Specifically, we seek to analyze to what extent such dynamics promote decentralization of technologies for generation, consumption, and storage (which is essential to obtain a more flexible power grid). Incentives for decentralization are also of relevance given recent interest in the deployment of small-scale modular technologies (e.g., modular ammonia and biogas production systems). Our analysis is based on an asset placement problem that seeks to find optimal locations for generators and loads in the network that minimize profit risk. We show that an unconstrained version of this problem can be cast as an eigenvalue problem. Under this representation, optimal network allocations are eigenvectors of the space-time price covariance matrix while the eigenvalues are the associated profit variances. We also construct a more sophisticated placement formulation that captures different risk metrics and constraints on types of technologies to systematically analyze trade-offs in expected profit and risk. Our analysis reveals that space-time market dynamics provide significant incentives for decentralization and strategic asset placement but that full mitigation of risk is only possible through simultaneous investment in generation and loads (which can be achieved using batteries or microgrids).  more » « less
Award ID(s):
1748516
PAR ID:
10145099
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Computers chemical engineering
ISSN:
0098-1354
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We consider radial distribution networks hosting Distributed Energy Resources (DERs), including Solar Photo­voltaic (PV) and storage-like loads, such as Electric Vehicles (EVs). We employ short-run dynamic Distribution Locational Marginal Costs (DLMCs) of real and reactive power to co­optimize distribution network and DER schedules. Striking a balance between centralized control and distributed self­dispatch, we present a novel hierarchical decomposition ap­proach that is based on centralized AC Optimal Power Flow (OPF) interacting with DER self-dispatch that adapts to real and reactive power DLMCs. The proposed approach is designed to be highly scalable for massive DER Grid integration with high model fidelity incorporating rigorous network component dynamics and costs and reffecting them in DLMCs. We illustrate the use of an Enhanced AC OPF to discover spatiotemporally varying DLMCs enabling optimal Grid-DER coordination in­corporating congestion and asset (transformer) degradation. We employ an actual distribution feeder to exemplify the use of DLMCs as financial incentives conveying sufficient information to optimize Distribution Network and DER (PV and EV) operation, and we discuss the applicability and tractability of the proposed approach, while modeling the full complexity of spatiotemporal DER capabilities and preferences. 
    more » « less
  2. The paper introduces an optimal maintenance scheduler based on predictive assessment of risk of outage and equipment failure in distribution networks. The variety of severe weather conditions are observed and their impact on the network components is quantified. The equipment deterioration and failure rates are observed continuously across the space and time using heterogeneous data. The risk of weather-related outages for each component is generated in real-time, and can be extracted at multiple temporal and spatial scales depending on the application of interest. The optimal maintenance scheduling that minimizes the system risk while maintaining the economic investment limits is developed. The benefits of the framework are presented using a distribution network asset management example. 
    more » « less
  3. Guruswami, Venkatesan (Ed.)
    In decentralized finance ("DeFi"), automated market makers (AMMs) enable traders to programmatically exchange one asset for another. Such trades are enabled by the assets deposited by liquidity providers (LPs). The goal of this paper is to characterize and interpret the optimal (i.e., profit-maximizing) strategy of a monopolist liquidity provider, as a function of that LP’s beliefs about asset prices and trader behavior. We introduce a general framework for reasoning about AMMs based on a Bayesian-like belief inference framework, where LPs maintain an asset price estimate, which is updated by incorporating traders' price estimates. In this model, the market maker (i.e., LP) chooses a demand curve that specifies the quantity of a risky asset to be held at each dollar price. Traders arrive sequentially and submit a price bid that can be interpreted as their estimate of the risky asset price; the AMM responds to this submitted bid with an allocation of the risky asset to the trader, a payment that the trader must pay, and a revised internal estimate for the true asset price. We define an incentive-compatible (IC) AMM as one in which a trader’s optimal strategy is to submit its true estimate of the asset price, and characterize the IC AMMs as those with downward-sloping demand curves and payments defined by a formula familiar from Myerson’s optimal auction theory. We generalize Myerson’s virtual values, and characterize the profit-maximizing IC AMM. The optimal demand curve generally has a jump that can be interpreted as a "bid-ask spread," which we show is caused by a combination of adverse selection risk (dominant when the degree of information asymmetry is large) and monopoly pricing (dominant when asymmetry is small). This work opens up new research directions into the study of automated exchange mechanisms from the lens of optimal auction theory and iterative belief inference, using tools of theoretical computer science in a novel way. 
    more » « less
  4. Edge computing allows end-user devices to offload heavy computation to nearby edge servers for reduced latency, maximized profit, and/or minimized energy consumption. Data-dependent tasks that analyze locally-acquired sensing data are one of the most common candidates for task offloading in edge computing. As a result, the total latency and network load are affected by the total amount of data transferred from end-user devices to the selected edge servers. Most existing solutions for task allocation in edge computing do not take into consideration that some user tasks may actually operate on the same data items. Making the task allocation algorithm aware of the existing data sharing characteristics of tasks can help reduce network load at a negligible profit loss by allocating more tasks sharing data on the same server. In this paper, we formulate the data sharing-aware task allocation problem that make decisions on task allocation for maximized profit and minimized network load by taking into account the data-sharing characteristics of tasks. In addition, because the problem is NP-hard, we design the DSTA algorithm, which finds a solution to the problem in polynomial time. We analyze the performance of the proposed algorithm against a state-of-the-art baseline that only maximizes profit. Our extensive analysis shows that DSTA leads to about 8 times lower data load on the network while being within 1.03 times of the total profit on average compared to the state-of-the-art. 
    more » « less
  5. Installation of line surge arresters on transmission towers can significantly improve the line lightning performance. However, it is not always economically beneficial to install the line surge arresters on every tower in the network. This paper proposes the method for optimal placement of line surge arresters that minimizes the overall risk of lightning related outages and disturbances, while staying within the required budgetary limits. A variety of data sources was used: utility asset management, geographical information system, lightning detection network, historical weather and weather forecasts, vegetation and soil properties. The proposed solution is focused on predicting the risk of transmission line insulators experiencing an insulation breakdown due to the accumulated deterioration over time and an instant impact of a given lightning strike. The linear regression prediction-based algorithm observes the impact of various historical events on each individual component. In addition, the spatial distribution of various impacts is used to enhance the predictive performance of the algorithm. The developed method is fully automated, making it a unique large scale automated decision-making risk model for real-time management of the transmission line lightning protection performance. Based on the observation of risk tracking and prediction, the zones with highest probability of lightning caused outages are identified. Then the optimization algorithm is applied to determine the best placement strategy for the limited number of line surge arresters that would provide the highest reduction in the overall risk for the network. Economic factors are taken into account in order to develop installation schedule that would enable economically efficient management of line lightning protection performance for utilities 
    more » « less