skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Activity recognition in manufacturing: The roles of motion capture and sEMG+inertial wearables in detecting fine vs. gross motion
In safety-critical environments, robots need to reliably recognize human activity to be effective and trust-worthy partners. Since most human activity recognition (HAR) approaches rely on unimodal sensor data (e.g. motion capture or wearable sensors), it is unclear how the relationship between the sensor modality and motion granularity (e.g. gross or fine) of the activities impacts classification accuracy. To our knowledge, we are the first to investigate the efficacy of using motion capture as compared to wearable sensor data for recognizing human motion in manufacturing settings. We introduce the UCSD-MIT Human Motion dataset, composed of two assembly tasks that entail either gross or fine-grained motion. For both tasks, we compared the accuracy of a Vicon motion capture system to a Myo armband using three widely used HAR algorithms. We found that motion capture yielded higher accuracy than the wearable sensor for gross motion recognition (up to 36.95%), while the wearable sensor yielded higher accuracy for fine-grained motion (up to 28.06%). These results suggest that these sensor modalities are complementary, and that robots may benefit from systems that utilize multiple modalities to simultaneously, but independently, detect gross and fine-grained motion. Our findings will help guide researchers in numerous fields of robotics including learning from demonstration and grasping to effectively choose sensor modalities that are most suitable for their applications.  more » « less
Award ID(s):
1724982 1734482
PAR ID:
10145264
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 International Conference on Robotics and Automation (ICRA)
Page Range / eLocation ID:
6533 to 6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Turkan, Yelda; Louis, Joseph; Leite, Fernanda; Ergan, Semiha (Ed.)
    Human activity recognition (HAR) using machine learning has shown tremendous promise in detecting construction workers’ activities. HAR has many applications in human-robot interaction research to enable robots’ understanding of human counterparts’ activities. However, many existing HAR approaches lack robustness, generalizability, and adaptability. This paper proposes a transfer learning methodology for activity recognition of construction workers that requires orders of magnitude less data and compute time for comparable or better classification accuracy. The developed algorithm transfers features from a model pre-trained by the original authors and fine-tunes them for the downstream task of activity recognition in construction. The model was pre-trained on Kinetics-400, a large-scale video-based human activity recognition dataset with 400 distinct classes. The model was fine-tuned and tested using videos captured from manual material handling (MMH) activities found on YouTube. Results indicate that the fine-tuned model can recognize distinct MMH tasks in a robust and adaptive manner which is crucial for the widespread deployment of collaborative robots in construction. 
    more » « less
  2. null (Ed.)
    Human activity recognition (HAR) is growing in popularity due to its wide-ranging applications in patient rehabilitation and movement disorders. HAR approaches typically start with collecting sensor data for the activities under consideration and then develop algorithms using the dataset. As such, the success of algorithms for HAR depends on the availability and quality of datasets. Most of the existing work on HAR uses data from inertial sensors on wearable devices or smartphones to design HAR algorithms. However, inertial sensors exhibit high noise that makes it difficult to segment the data and classify the activities. Furthermore, existing approaches typically do not make their data available publicly, which makes it difficult or impossible to obtain comparisons of HAR approaches. To address these issues, we present wearable HAR (w-HAR) which contains labeled data of seven activities from 22 users. Our dataset’s unique aspect is the integration of data from inertial and wearable stretch sensors, thus providing two modalities of activity information. The wearable stretch sensor data allows us to create variable-length segment data and ensure that each segment contains a single activity. We also provide a HAR framework to use w-HAR to classify the activities. To this end, we first perform a design space exploration to choose a neural network architecture for activity classification. Then, we use two online learning algorithms to adapt the classifier to users whose data are not included at design time. Experiments on the w-HAR dataset show that our framework achieves 95% accuracy while the online learning algorithms improve the accuracy by as much as 40%. 
    more » « less
  3. In this work, we present a novel non-visual HAR system that achieves state-of-the-art performance on realistic SCE tasks via a single wearable sensor. We leverage surface electromyography and inertial data from a low-profile wearable sensor to attain performant robot perception while remaining unobtrusive and user-friendly. By capturing both convolutional and temporal features with a hybrid CNN-LSTM classifier, our system is able to robustly and effectively classify complex, full-body human activities with only this single sensor. We perform a rigorous analysis of our method on two datasets representative of SCE tasks, and compare performance with several prominent HAR algorithms. Results show our system substantially outperforms rival algorithms in identifying complex human tasks from minimal sensing hardware, achieving F1-scores up to 84% over 31 strenuous activity classes. To our knowledge, we are the first to robustly identify complex full-body tasks using a single, unobtrusive sensor feasible for real-world use in SCEs. Using our approach, robots will be able to more reliably understand human activity, enabling them to safely navigate sensitive, crowded spaces. 
    more » « less
  4. Human activity recognition (HAR) and, more broadly, activities of daily life recognition using wearable devices have the potential to transform a number of applications, including mobile healthcare, smart homes, and fitness monitoring. Recent approaches for HAR use multiple sensors on various locations on the body to achieve higher accuracy for complex activities. While multiple sensors increase the accuracy, they are also susceptible to reliability issues when one or more sensors are unable to provide data to the application due to sensor malfunction, user error, or energy limitations. Training multiple activity classifiers that use a subset of sensors is not desirable, since it may lead to reduced accuracy for applications. To handle these limitations, we propose a novel generative approach that recovers the missing data of sensors using data available from other sensors. The recovered data are then used to seamlessly classify activities. Experiments using three publicly available activity datasets show that with data missing from one sensor, the proposed approach achieves accuracy that is within 10% of the accuracy with no missing data. Moreover, implementation on a wearable device prototype shows that the proposed approach takes about 1.5 ms for recovering data in the w-HAR dataset, which results in an energy consumption of 606 μJ. The low-energy consumption ensures that SensorGAN is suitable for effectively recovering data in tinyML applications on energy-constrained devices. 
    more » « less
  5. Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to simple activity recognition tasks. 
    more » « less