A method for the synthesis of sulfides from carboxylic acids via thioester C–S activation and acyl capture has been developed, wherein thioesters serve as dual electrophilic activators of carboxylic acids and S-nucleophiles through the merger of decarbonylative palladium catalysis and sulfur coupling. This new concept employs readily available carboxylic acids as coupling partners to directly intercept sulfur reagents via redox-neutral thioester-enabled cross-over thioetherification. The scope of this platform is demonstrated in the highly selective decarbonylative thioetherification of a variety of carboxylic acids and thioesters, including late-stage derivatization of pharmaceuticals and natural products. This method operates under mild, external base-free, and operationally practical conditions, providing a powerful new framework to unlock aryl electrophiles from carboxylic acids and increase the reactivity by employing common building blocks in organic synthesis.
more »
« less
Highly-chemoselective step-down reduction of carboxylic acids to aromatic hydrocarbons via palladium catalysis
Aryl carboxylic acids are among the most abundant substrates in chemical synthesis and represent a perfect example of a traceless directing group that is central to many processes in the preparation of pharmaceuticals, natural products and polymers. Herein, we describe a highly selective method for the direct step-down reduction of carboxylic acids to arenes, proceeding via well-defined Pd(0)/( ii ) catalytic cycle. The method shows a remarkably broad substrate scope, enabling to direct the classical acyl reduction towards selective decarbonylation by a redox-neutral mechanism. The utility of this reaction is highlighted in the direct defunctionalization of pharmaceuticals and natural products, and further emphasized in a range of traceless processes using removable carboxylic acids under mild, redox-neutral conditions orthogonal to protodecarboxylation. Extensive DFT computations were conducted to demonstrate preferred selectivity for the reversible oxidative addition and indicated that a versatile hydrogen atom transfer (HAT) pathway is operable.
more »
« less
- Award ID(s):
- 1650766
- PAR ID:
- 10146146
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 10
- Issue:
- 22
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 5736 to 5742
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Decarbonylative borylation of carboxylic acids is reported. Carbon electrophiles are generated directly after reagent‐enabled decarbonylation of the in situ accessible sterically‐hindered acyl derivative of a carboxylic acid under catalyst controlled conditions. The scope and the potential impact of this method are demonstrated in the selective borylation of a variety of aromatics (>50 examples). This strategy was used in the late‐stage derivatization of pharmaceuticals and natural products. Computations reveal the mechanistic details of the unprecedented C−O bond activation of carboxylic acids. By circumventing the challenging decarboxylation, this strategy provides a general synthetic platform to access arylpalladium species for a wide array of bond formations from abundant carboxylic acids. The study shows a powerful combination of experiment and computation to predict decarbonylation selectivity.more » « less
-
Abstract A Rh(I)‐catalyzed C6‐selective C−H arylation of 2‐pyridones with inexpensive, readily available, safe and structurally diverse aryl carboxylic acids with the aid of a pyridine directing group is developed. This decarbonylative arylation protocol features an easy‐to‐handle catalytic system, and is amenable to diversely substituted 2‐pyridones and aryl carboxylic acids. It allows access to a wide range of C6‐arylated 2‐pyridones, including those that are difficult to prepare using conventional C−H arylation processes. The method tolerates various electron‐neutral, electron‐rich and electron‐deficient functional groups, and affords the products in 41–91% yields. magnified imagemore » « less
-
The α-acyloxylcarbonyl motif can be found in many important pharmaceuticals and biologically active natural products and their derivatives. In this manuscript, the direct synthesis of α-acyloxylketones from ketones and readily available carboxylic acids was realized using a photo-assisted halogen bond-mediated organocatalytic α-acyloxylation reaction. The desired α-acyloxylation products were obtained in good to high yields.more » « less
-
Abstract Cooperative bimetallic catalysis is a fundamental approach in modern synthetic chemistry. We report bimetallic cooperative catalysis for the direct decarbonylative heteroarylation of ubiquitous carboxylic acids via acyl C‐O/C‐H coupling. This novel catalytic system exploits the cooperative action of a copper catalyst and a palladium catalyst in decarbonylation, which enables highly chemoselective synthesis of important heterobiaryl motifs through the coupling of carboxylic acids with heteroarenes in the absence of prefunctionalization or directing groups. This cooperative decarbonylative method uses common carboxylic acids and shows a remarkably broad substrate scope (>70 examples), including late‐stage modification of pharmaceuticals and streamlined synthesis of bioactive agents. Extensive mechanistic and computational studies were conducted to gain insight into the mechanism of the reaction. The key step involves intersection of the two catalytic cycles via transmetallation of the copper–aryl species with the palladium(II) intermediate generated by oxidative addition/decarbonylation.more » « less
An official website of the United States government

