skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enantioselective construction of the tricyclic core of curcusones A–D via a cross-electrophile coupling approach
Herein we report our recent progress toward the enantioselective total synthesis of the diterpenoid natural products curcusones A–D by means of complementary Stetter annulation or ring-closing metathesis (RCM) disconnections. Using the latter approach, we have achieved the concise construction of the 5–7–6 carbocyclic core embedded in each member of the curcusone family. Essential to this route is the use of a cross-electrophile coupling strategy, which has not previously been harnessed in the context of natural product synthesis.  more » « less
Award ID(s):
1800511
PAR ID:
10146309
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemical Science
Volume:
10
Issue:
45
ISSN:
2041-6520
Page Range / eLocation ID:
10562 to 10565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The total synthesis of the lignan-based cyclobutane di- O -methylendiandrin A has been achieved using diastereoselective, vicinal alkylation and transannular McMurry reactions of a macrocyclic 1,4-diketone as key transformations for establishing relative stereochemistry and furnishing the strained 4-membered ring of the natural product. 
    more » « less
  2. Abstract The biosynthetic origins of the structurally related racemic isoxazolidinePapaveraceaealkaloids Setigerumine I, Dactylicapnosinine and Dactylicapnosine have remained elusive since their original isolation over two decades ago. Herein we report the first biosynthetic hypothesis for their formation and, inspired by it, the first synthesis of (±)‐Setigerumine I with accompanying computational rationale. Based on the results, these isoxazolidine alkaloids arise from racemizing oxidative rearrangements of prominent isoquinoline alkaloids Noscapine and Hydrastine. The key steps featured in this synthesis are a room temperature Cope elimination and a domino oxidation/inverse‐electron demand 1,3‐dipolar cycloaddition of an axially chiral, yet configurationally unstable, intermediate. The work opens this previously inaccessible family of natural products for biological studies. 
    more » « less
  3. Abstract Described herein is a function‐oriented synthesis route and biological evaluation of pseudoguaianolide analogues. The 10‐step synthetic route developed retains the topological complexity of the natural product, installs functional handles for late‐stage diversification, and forges the key bioactive Michael acceptors early in the synthesis. The analogues were found to be low‐micromolar Nrf2 activators and micromolar NF‐κB inhibitors and dependent on the local environment of the Michael acceptor moieties. 
    more » « less
  4. Abstract Ade novoasymmetric strategy for the synthesis ofd‐bradyrhizose diastereomers from an achiral ketoenolester precursor is described. Key transformations used in the stereodivergent approach include two Noyori asymmetric reductions, an Achmatowicz rearrangement, diastereoselective alkene oxidations, and the first example of a palladium(0)‐catalyzed glycosylation of a vinylogous pyranone. The isomeric composition of the bicyclic reducing sugars obtained was analyzed and their behaviour was compared to the natural product, revealing key stereocentres that impact the overall distribution. 
    more » « less
  5. Aryl carboxylic acids are among the most abundant substrates in chemical synthesis and represent a perfect example of a traceless directing group that is central to many processes in the preparation of pharmaceuticals, natural products and polymers. Herein, we describe a highly selective method for the direct step-down reduction of carboxylic acids to arenes, proceeding via well-defined Pd(0)/( ii ) catalytic cycle. The method shows a remarkably broad substrate scope, enabling to direct the classical acyl reduction towards selective decarbonylation by a redox-neutral mechanism. The utility of this reaction is highlighted in the direct defunctionalization of pharmaceuticals and natural products, and further emphasized in a range of traceless processes using removable carboxylic acids under mild, redox-neutral conditions orthogonal to protodecarboxylation. Extensive DFT computations were conducted to demonstrate preferred selectivity for the reversible oxidative addition and indicated that a versatile hydrogen atom transfer (HAT) pathway is operable. 
    more » « less