Three protocols of accelerated startup and shutdown (SU/SD) test were investigated: startup and shutdown with air supply and soak to both anode and cathode (air-SU/SD), hydrogen protected startup and shutdown (H 2 -SU/SD), and hydrogen protected startup and shutdown with a load (H 2 -SU/SD with a load). The performance losses, electrochemical surface area (ECSA) reduction, and catalyst layer degradation were characterized and compared for these SU/SD protocols. Air-SU/SD protocol showed much more severe performance loss and catalyst layer degradation than hydrogen protected ones, which confirmed the benefits of hydrogen protection. The temperature effect on air-SU/SD was significant in a broad range from 20 °C to 70 °C, with low temperature greatly reducing the degradation. The mechanism of H 2 protection and load drawn in alleviating carbon corrosion was explained based on reactions and charge conservation during SU/SD. This paper provides comprehensive test data and failure analysis to quantify the benefits of H 2 protection and load drawn and to facilitate future enhancement of system strategies on SU/SD durability. 
                        more » 
                        « less   
                    
                            
                            Real-time imaging of activation and degradation of carbon supported octahedral Pt–Ni alloy fuel cell catalysts at the nanoscale using in situ electrochemical liquid cell STEM
                        
                    
    
            Octahedrally shaped Pt–Ni alloy nanoparticles on carbon supports have demonstrated unprecedented electrocatalytic activity for the oxygen reduction reaction (ORR), sparking interest as catalysts for low-temperature fuel cell cathodes. However, deterioration of the octahedral shape that gives the catalyst its superior activity currently prohibits the use of shaped catalysts in fuel cell devices, while the structural dynamics of the overall catalyst degradation are largely unknown. We investigate the time-resolved degradation pathways of such a Pt–Ni alloy catalyst supported on carbon during cycling and startup/shutdown conditions using an in situ STEM electrochemical liquid cell, which allows us to track changes happening over seconds. Thereby we can precisely correlate the applied electrochemical potential with the microstructural response of the catalyst. We observe changes of the nanocatalysts’ structure, monitor particle motion and coalescence at potentials that corrode carbon, and investigate the dissolution and redeposition processes of the nanocatalyst under working conditions. Carbon support motion, particle motion, and particle coalescence were observed as the main microstructural responses to potential cycling and holds in regimes where carbon corrosion happens. Catalyst motion happened more severely during high potential holds and sudden potential changes than during cyclic potential sweeps, despite carbon corrosion happening during both, as suggested by ex situ DEMS results. During an extremely high potential excursion, the shaped nanoparticles became mobile on the carbon support and agglomerated facet-to-facet within 10 seconds. These experiments suggest that startup/shutdown potential treatments may cause catalyst coarsening on a much shorter time scale than full collapse of the carbon support. Additionally, the varying degrees of attachment of particles on the carbon support indicates that there is a distribution of interaction strengths, which in the future should be optimized for shaped particles. We further track the dissolution of Ni nanoparticles and determine the dissolution rate as a function of time for an individual nanoparticle – which occurs over the course of a few potential cycles for each particle. This study provides new visual understanding of the fundamental structural dynamics of nanocatalysts during fuel cell operation and highlights the need for better catalyst-support anchoring and morphology for allowing these highly active shaped catalysts to become useful in PEM fuel cell applications. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1719875
- PAR ID:
- 10146561
- Date Published:
- Journal Name:
- Energy & Environmental Science
- Volume:
- 12
- Issue:
- 8
- ISSN:
- 1754-5692
- Page Range / eLocation ID:
- 2476 to 2485
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Platinum group metal-free (PGM-free) catalysts for the oxygen reduction reaction (ORR) with atomically dispersed FeN 4 sites have emerged as a potential replacement for low-PGM catalysts in acidic polymer electrolyte fuel cells (PEFCs). In this work, we carefully tuned the doped Fe content in zeolitic imidazolate framework (ZIF)-8 precursors and achieved complete atomic dispersion of FeN 4 sites, the sole Fe species in the catalyst based on Mößbauer spectroscopy data. The Fe–N–C catalyst with the highest density of active sites achieved respectable ORR activity in rotating disk electrode (RDE) testing with a half-wave potential ( E 1/2 ) of 0.88 ± 0.01 V vs. the reversible hydrogen electrode (RHE) in 0.5 M H 2 SO 4 electrolyte. The activity degradation was found to be more significant when holding the potential at 0.85 V relative to standard potential cycling (0.6–1.0 V) in O 2 saturated acid electrolyte. The post-mortem electron microscopy analysis provides insights into possible catalyst degradation mechanisms associated with Fe–N coordination cleavage and carbon corrosion. High ORR activity was confirmed in fuel cell testing, which also divulged the promising performance of the catalysts at practical PEFC voltages. We conclude that the key factor behind the high ORR activity of the Fe–N–C catalyst is the optimum Fe content in the ZIF-8 precursor. While too little Fe in the precursors results in an insufficient density of FeN 4 sites, too much Fe leads to the formation of clusters and an ensuing significant loss in catalytic activity due to the loss of atomically dispersed Fe to inactive clusters or even nanoparticles. Advanced electron microscopy was used to obtain insights into the clustering of Fe atoms as a function of the doped Fe content. The Fe content in the precursor also affects other key catalyst properties such as the particle size, porosity, nitrogen-doping level, and carbon microstructure. Thanks to using model catalysts exclusively containing FeN 4 sites, it was possible to directly correlate the ORR activity with the density of FeN 4 species in the catalyst.more » « less
- 
            Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO.more » « less
- 
            ArticleCathodic Corrosion-Induced Structural Evolution of CuNi Electrocatalysts for Enhanced CO2 ReductionWenjin Sun 1,†, Bokki Min 2,†, Maoyu Wang 3, Xue Han 4, Qiang Gao 1, Sooyeon Hwang 5, Hua Zhou 3, and Huiyuan Zhu 1,2,*1 Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA2 Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA3 Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA4 Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA5 Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA* Correspondence: kkx8js@virginia.com† These authors contributed equally to this work.Received: 22 October 2024; Revised: 25 November 2024; Accepted: 27 November 2024; Published: 4 December 2024 Abstract: The electrochemical CO2 reduction reaction (CO2RR) has attracted significant attention as a promising strategy for storing intermittent energy in chemical bonds while sustainably producing value-added chemicals and fuels. Copper-based bimetallic catalysts are particularly appealing for CO2RR due to their unique ability to generate multi-carbon products. While substantial effort has been devoted to developing new catalysts, the evolution of bimetallic systems under operational conditions remains underexplored. In this work, we synthesized a series of CuxNi1−x nanoparticles and investigated their structural evolution during CO2RR. Due to the higher oxophilicity of Ni compared to Cu, the particles tend to become Ni-enriched at the surface upon air exposure, promoting the competing hydrogen evolution reaction (HER). At negative activation potentials, cathodic corrosion has been observed in CuxNi1−x nanoparticles, leading to the significant Ni loss and the formation of irregularly shaped Cu nanoparticles with increased defects. This structural evolution, driven by cathodic corrosion, shifts the electrolysis from HER toward CO2 reduction, significantly enhancing the Faradaic efficiency of multi-carbon products (C2+).more » « less
- 
            Proton Exchange Membrane (PEM) fuel cells are a suitable electrochemical power source for heavy duty vehicle (HDV) applications due to their high efficiency and durability. The cathode of the fuel cell uses a higher geometric loading of platinum (∼0.2 to 0.4 mgPt/cm2) for the electrocatalysis of the kinetically sluggish Oxygen Reduction Reaction (ORR) which requires higher weight percent loading of the metal (∼50%) on the carbon support to decrease the catalyst layer thickness and hence, the reactant transport losses. The conventionally used supports for platinum catalyst, such as the KetjenBlackTMtype high surface area carbon (HSC) features limited mesopore area for the dispersion of Pt nanoparticles leading to increased aggregation and poor durability. Here, we show a new class of carbon materials known as the Engineered Catalyst Support (ECS) developed by Pajarito Powder with higher mesopore fraction for the dispersion of higher weight percentage of Pt nanoparticles. ECS materials can disperse up to 50% Pt by weight of the catalyst thereby enabling lower catalyst layer thickness with higher performance retained after durability test. A comprehensive set of physico-chemical and electrochemical studies in membrane electrode assembly (MEA) are reported to understand the performance and durability of Pt/ECS catalysts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    