skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Carbon Corrosion and Platinum Dissolution Durability in Automotive Fuel Cell Startup and Shutdown Operation
Three protocols of accelerated startup and shutdown (SU/SD) test were investigated: startup and shutdown with air supply and soak to both anode and cathode (air-SU/SD), hydrogen protected startup and shutdown (H 2 -SU/SD), and hydrogen protected startup and shutdown with a load (H 2 -SU/SD with a load). The performance losses, electrochemical surface area (ECSA) reduction, and catalyst layer degradation were characterized and compared for these SU/SD protocols. Air-SU/SD protocol showed much more severe performance loss and catalyst layer degradation than hydrogen protected ones, which confirmed the benefits of hydrogen protection. The temperature effect on air-SU/SD was significant in a broad range from 20 °C to 70 °C, with low temperature greatly reducing the degradation. The mechanism of H 2 protection and load drawn in alleviating carbon corrosion was explained based on reactions and charge conservation during SU/SD. This paper provides comprehensive test data and failure analysis to quantify the benefits of H 2 protection and load drawn and to facilitate future enhancement of system strategies on SU/SD durability.  more » « less
Award ID(s):
2046060
PAR ID:
10432677
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
168
Issue:
3
ISSN:
0013-4651
Page Range / eLocation ID:
034503
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photoelectrode degradation under harsh solution conditions continues to be a major hurdle for long-term operation and large-scale implementation of solar fuel conversion. In this study, a dual-layer TiO2 protection strategy is presented to improve the interfacial durability between nanoporous black silicon and photocatalysts. Nanoporous silicon photocathodes decorated with catalysts are passivated twice, providing an intermediate TiO2 layer between the substrate and catalyst and an additional TiO2 layer on top of the catalysts. Atomic layer deposition of TiO2 ensures uniform coverage of both the nanoporous silicon substrate and the catalysts. After 24 h of electrolysis at pH = 0.3, unprotected photocathodes layered with platinum and molybdenum sulfide retain only 30% and 20% of their photocurrent, respectively. At the same pH, photocathodes layered with TiO2 experience an increase in photocurrent retention: 85% for platinum-coated photocathodes and 91% for molybdenum sulfide–coated photocathodes. Under alkaline conditions, unprotected photocathodes experience a 95% loss in photocurrent within the first 4 h of electrolysis. In contrast, TiO2-protected photocathodes maintain 70% of their photocurrent during 12 h of electrolysis. This approach is quite general and may be employed as a protection strategy for a variety of photoabsorber–catalyst interfaces under both acidic and basic electrolyte conditions 
    more » « less
  2. Octahedrally shaped Pt–Ni alloy nanoparticles on carbon supports have demonstrated unprecedented electrocatalytic activity for the oxygen reduction reaction (ORR), sparking interest as catalysts for low-temperature fuel cell cathodes. However, deterioration of the octahedral shape that gives the catalyst its superior activity currently prohibits the use of shaped catalysts in fuel cell devices, while the structural dynamics of the overall catalyst degradation are largely unknown. We investigate the time-resolved degradation pathways of such a Pt–Ni alloy catalyst supported on carbon during cycling and startup/shutdown conditions using an in situ STEM electrochemical liquid cell, which allows us to track changes happening over seconds. Thereby we can precisely correlate the applied electrochemical potential with the microstructural response of the catalyst. We observe changes of the nanocatalysts’ structure, monitor particle motion and coalescence at potentials that corrode carbon, and investigate the dissolution and redeposition processes of the nanocatalyst under working conditions. Carbon support motion, particle motion, and particle coalescence were observed as the main microstructural responses to potential cycling and holds in regimes where carbon corrosion happens. Catalyst motion happened more severely during high potential holds and sudden potential changes than during cyclic potential sweeps, despite carbon corrosion happening during both, as suggested by ex situ DEMS results. During an extremely high potential excursion, the shaped nanoparticles became mobile on the carbon support and agglomerated facet-to-facet within 10 seconds. These experiments suggest that startup/shutdown potential treatments may cause catalyst coarsening on a much shorter time scale than full collapse of the carbon support. Additionally, the varying degrees of attachment of particles on the carbon support indicates that there is a distribution of interaction strengths, which in the future should be optimized for shaped particles. We further track the dissolution of Ni nanoparticles and determine the dissolution rate as a function of time for an individual nanoparticle – which occurs over the course of a few potential cycles for each particle. This study provides new visual understanding of the fundamental structural dynamics of nanocatalysts during fuel cell operation and highlights the need for better catalyst-support anchoring and morphology for allowing these highly active shaped catalysts to become useful in PEM fuel cell applications. 
    more » « less
  3. Abstract This study aims to improve the combined energy efficiency of data center cooling systems and heating/cooling systems in surrounding premises by implementing a modular cooling approach on a 42 U IT rack. The cooling solution uses a close-coupled technique where the servers are air-cooled, and the air in turn is cooled within the rack enclosure using an air-to-refrigerant heat exchanger. The refrigerant passively circulates in a loop as a thermosyphon, making the system self-sustaining during startup and shutdown, self-regulating under varying heat loads, and virtually maintenance-free by eliminating mechanical parts (other than the cabinet fans). A heat load range of 2 kW–7.5 kW is tested on a prototype system. Experimental results reveal stable thermosyphon operation using R1233zd(E) as the working fluid, a maximum evaporator pressure drop of 21.5 kPa at the highest heat load and a minimum thermosyphon resistance of 6.8 mK/W at a heat load of 5.7 kW. The air temperature profile across the load banks (server simulators) and evaporator follow the same profiles with varying heat loads. Heat losses from the cabinet due to natural convection and radiation are of the order of several Watts for heat loads below 4 kW and rise sharply to 1 kW at the highest heat load tested. The system time constant is determined to be 25 min. The heat recovery process can be financially and environmentally beneficial depending on the downstream application. 
    more » « less
  4. Abstract The discovery of layered materials with potentially unique electrical and chemical properties has become a major focus of materials research in the past decade. 2D II–VI layered hybrids (LHs) are a family of ligand‐protected layered materials capable of isolation in few‐layer form and possess emissive and electronic properties of potential relevance to semiconductor device technologies. The authors showed previously that, akin to black phosphorus and transition metal dichalcogenides, 2D II–VI LHs are sensitive to ambient atmospheric conditions. However, the causes for degradation of these ligand‐protected materials remain unclear. Using ZnSe‐based LHs, it is shown herein that the stability of these materials is related to the length and chemistry of the organic ligands coordinated to the LH surfaces. Furthermore, exposure to isotopically enriched H218O and18O2reveals that H2O and O2are both reactants contributing to ZnSe‐LH degradation. An H2O‐initiated degradation pathway is proposed and is supported by density functional theory calculations. The findings contribute to the discovery of protection strategies for layered materials and elucidate a degradation pathway that may also be applicable to other layered materials. 
    more » « less
  5. During high current density operation, water production in the polymer electrolyte membrane fuel cell (PEMFC) cathode catalyst layer can negatively affect performance by lowering mass transport of oxygen into the cathode. In this paper, a novel heat treatment process for controlling the ionic polymer/gas interface property of the fuel cell catalyst layer is investigated and then incorporated into the membrane electrode assembly (MEA) fabrication process. XPS characterization of the catalyst layer’s ionomer-gas interface at its outer surface and its sublayers’ surfaces obtained by scraping off successive layers of the catalyst layers confirms that a hydrophobic ionomer interface can be achieved across the catalyst layer using a specific heat treatment condition. Based on the results of the catalyst layer study, the MEA fabrication process is modified to identify heat treatment configuration and conditions that will create an optimal hydrophobic ionomer-gas interface inside the cathode catalyst layer. Finally, fuel cell tests conducted on the conventional and new MEAs under different operating temperatures show the performance of the fuel cells with the treated MEAs was > 130% higher than that with the conventional MEA at 25 °C and 70 °C with humidified air and > 45% higher at 70 °C with dry air. The durability of the hydrophobic treatment on the cathode catalyst layer ionomer is also confirmed by the accelerated stress test. 
    more » « less