skip to main content

Title: MJO Teleconnections over the PNA Region in Climate Models. Part I: Performance- and Process-Based Skill Metrics
We propose a set of MJO teleconnection diagnostics that enables an objective evaluation of model simulations, a fair model-to-model comparison, and a consistent tracking of model improvement. Various skill metrics are derived from teleconnection diagnostics including five performance-based metrics that characterize the pattern, amplitude, east–west position, persistence, and consistency of MJO teleconnections and additional two process-oriented metrics that are designed to characterize the location and intensity of the anomalous Rossby wave source (RWS). The proposed teleconnection skill metrics are used to compare the characteristics of boreal winter MJO teleconnections (500-hPa geopotential height anomaly) over the Pacific–North America (PNA) region in 29 global climate models (GCMs). The results show that current GCMs generally produce MJO teleconnections that are stronger, more persistent, and extend too far to the east when compared to those observed in reanalysis. In general, models simulate more realistic teleconnection patterns when the MJO is in phases 2–3 or phases 7–8, which are characterized by a dipole convection pattern over the Indian Ocean and western to central Pacific. The higher model skill for phases 2, 7, and 8 may be due to these phases producing more consistent teleconnection patterns between individual MJO events than other phases, although the consistency is lower in most models than observed. Models that simulate realistic RWS patterns better reproduce MJO teleconnection patterns.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Climate
Page Range / eLocation ID:
1051 to 1067
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Madden–Julian oscillation (MJO) excites strong variations in extratropical atmospheric circulations that have important implications for subseasonal-to-seasonal (S2S) prediction. A previous study showed that particular MJO phases are characterized by a consistent modulation of geopotential heights in the North Pacific and adjacent regions across different MJO events, and demonstrated that this consistency is beneficial for extended numerical weather forecasts (i.e., lead times of two weeks to one month). In this study, we examine the physical mechanisms that lead some MJO phases to have more consistent teleconnections than others using a linear baroclinic model. The results show that MJO phases 2, 3, 6, and 7 consistently generate Pacific–North American (PNA)-like patterns on S2S time scales while other phases do not. A Rossby wave source analysis is applied and shows that a dipole-like pattern of Rossby wave source on each side of the subtropical jet can increase the pattern consistency of teleconnections due to the constructive interference of similar teleconnection signals. On the other hand, symmetric patterns of Rossby wave source can dramatically reduce the pattern consistency due to destructive interference. A dipole-like Rossby wave source pattern is present most frequently when tropical heating is found in the Indian Ocean or the Pacific warm pool, and a symmetric Rossby wave source is present most frequently when tropical heating is located over the Maritime Continent. Thus, the MJO phase-dependent pattern consistency of teleconnections is a special case of this mechanism.

    more » « less
  2. Abstract

    Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways.

    more » « less
  3. In an assessment of 29 global climate models (GCMs), Part I of this study identified biases in boreal winter MJO teleconnections in anomalous 500-hPa geopotential height over the Pacific–North America (PNA) region that are common to many models: an eastward shift, a longer persistence, and a larger amplitude. In Part II, we explore the relationships of the teleconnection metrics developed in Part I with several existing and newly developed MJO and basic state (the mean subtropical westerly jet) metrics. The MJO and basic state diagnostics indicate that the MJO is generally weaker and less coherent and propagates faster in models compared to observations. The mean subtropical jet also exhibits notable biases such as too strong amplitude, excessive eastward extension, or southward shift. The following relationships are found to be robust among the models: 1) models with a faster MJO propagation tend to produce weaker teleconnections; 2) models with a less coherent eastward MJO propagation tend to simulate more persistent MJO teleconnections; 3) models with a stronger westerly jet produce stronger and eastward shifted MJO teleconnections; 4) models with an eastward extended jet produce an eastward shift in MJO teleconnections; and 5) models with a southward shifted jet produce stronger MJO teleconnections. The results are supported by linear baroclinic model experiments. Our results suggest that the larger amplitude and eastward shift biases in GCM MJO teleconnections can be attributed to the biases in the westerly jet, and that the longer persistence bias is likely due to the lack of coherent eastward MJO propagation.

    more » « less
  4. The Madden–Julian oscillation (MJO) excites strong variations in extratropical geopotential heights that modulate extratropical weather, making the MJO an important predictability source on subseasonal to seasonal time scales (S2S). Previous research demonstrates a strong similarity of teleconnection patterns across MJO events for certain MJO phases (i.e., pattern consistency) and increased model ensemble agreement during these phases that is beneficial for extended numerical weather forecasts. However, the MJO’s ability to modulate extratropical weather varies greatly on interannual time scales, which brings extra uncertainty in leveraging the MJO for S2S prediction. Few studies have investigated the mechanisms responsible for variations in the consistency of MJO tropical–extratropical teleconnections on interannual time scales. This study uses reanalysis data, ensemble simulations of a linear baroclinic model, and a Rossby wave ray tracing algorithm to demonstrate that two mechanisms largely determine the interannual variability of MJO teleconnection consistency. First, the meridional shift of stationary Rossby wave ray paths indicates increases (decreases) in the MJO’s extratropical modulation during La Niña (El Niño) years. Second, a previous study proposed that the constructive interference of Rossby wave signals caused by a dipole Rossby wave source pattern across the subtropical jet during certain MJO phases produces a consistent MJO teleconnection. However, this dipole feature is less clear in both El Niño and La Niña years due to the extension and contraction of MJO convection, respectively, which would decrease the MJO’s influence in the extratropics. Hence, considering the joint influence of the basic state and MJO forcing, this study suggests a diminished potential to leverage the MJO for S2S prediction in El Niño years.

    more » « less
  5. Abstract

    The summer North American dipole (NAD) is a pattern of climate variability linked to variations in boreal forest seed production and migration of seed-eating birds. This is a modeling investigation of two teleconnections identified as drivers of the NAD in prior observational work: 1) tropically sourced atmospheric Rossby waves associated with anomalies in the phase distribution of the Madden–Julian oscillation (MJO) (i.e., phases 1 and 6 are anomalously prominent), and 2) a pan-Pacific atmospheric Rossby wave linked to East Asian monsoonal (EAM) convection. Sea surface temperature (SST) boundary forcing experiments were conducted with the Community Earth System Model 2 (CESM2) to trigger convection patterns that align with those observed during EAM and nonuniform phase distributions of MJO. For the EAM case, an El Niño–like SST dipole pattern combined with cool southern Japan SST forcing produced a convection and jet stream shift anomaly over East Asia and the northern Pacific with a positive NAD pattern downstream over North America, similar to the observed pattern when precipitation over East Asia (PEA) is relatively high. A companion experiment with only ENSO-like SST forcing also produced the NAD but featured a different structure over the Eurasian continent with a response resembling the summer east Atlantic (SEA) pattern over eastern North America and the eastern Atlantic. Simulation results suggest that the southern Japan SST forcing region has a secondary importance in triggering the NAD, producing only a somewhat NAD-like pattern by itself and only slightly improving the NAD produced by ENSO-like forcing. Simulations using SST forcing to induce seasonal convection anomalies with spatial patterns similar to anomalously frequent occurrence of MJO phase 1 (phase 6) produced circulation response patterns resembling the positive NAD (negative NAD).

    more » « less