skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MJO Teleconnections over the PNA Region in Climate Models. Part II: Impacts of the MJO and Basic State
In an assessment of 29 global climate models (GCMs), Part I of this study identified biases in boreal winter MJO teleconnections in anomalous 500-hPa geopotential height over the Pacific–North America (PNA) region that are common to many models: an eastward shift, a longer persistence, and a larger amplitude. In Part II, we explore the relationships of the teleconnection metrics developed in Part I with several existing and newly developed MJO and basic state (the mean subtropical westerly jet) metrics. The MJO and basic state diagnostics indicate that the MJO is generally weaker and less coherent and propagates faster in models compared to observations. The mean subtropical jet also exhibits notable biases such as too strong amplitude, excessive eastward extension, or southward shift. The following relationships are found to be robust among the models: 1) models with a faster MJO propagation tend to produce weaker teleconnections; 2) models with a less coherent eastward MJO propagation tend to simulate more persistent MJO teleconnections; 3) models with a stronger westerly jet produce stronger and eastward shifted MJO teleconnections; 4) models with an eastward extended jet produce an eastward shift in MJO teleconnections; and 5) models with a southward shifted jet produce stronger MJO teleconnections. The results are supported by linear baroclinic model experiments. Our results suggest that the larger amplitude and eastward shift biases in GCM MJO teleconnections can be attributed to the biases in the westerly jet, and that the longer persistence bias is likely due to the lack of coherent eastward MJO propagation.  more » « less
Award ID(s):
1652289 1841754
PAR ID:
10149999
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
12
ISSN:
0894-8755
Page Range / eLocation ID:
p. 5081-5101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Future changes in boreal winter MJO teleconnections over the Pacific–North America (PNA) region are examined in 15 Coupled Model Intercomparison Project phase 6 models (CMIP6s) under SSP585 (i.e., Shared Socioeconomic Pathway 5 following approximately the representative concentration pathway RCP8.5) scenarios. The most robust and significant change is an eastward extension (∼4° eastward for the multimodel mean) of MJO teleconnections in the North Pacific. Other projected changes in MJO teleconnections include a northward extension, more consistent patterns between different MJO events, stronger amplitude, and shorter persistence; however, these changes are more uncertain and less significant with a large intra- and intermodel spread. Mechanisms of the eastward teleconnection extension are investigated by comparing impacts of the future MJO and basic state changes on the anomalous Rossby wave source (RWS) and teleconnection pathways with a linear baroclinic model (LBM). The eastward extended jet in the future plays a more important role than the eastward-extended MJO in influencing the east–west position of MJO teleconnections. It leads to more eastward teleconnection propagation along the jet due to the eastward extension of turning latitudes before they propagate into North America. MJO teleconnections thus are positioned 2.9° more eastward in the North Pacific in the LBM. The eastward extended MJO, on the other hand, helps to generate a more eastward-extended RWS. However, negligible change is found in the east–west position of MJO teleconnections (only 0.3° more eastward in the LBM) excited from this RWS without the jet impacts. The above results suggest the dominant role of the jet change in influencing future MJO teleconnection position by altering their propagation pathways. 
    more » « less
  2. Abstract Observational analysis has indicated a strong connection between the stratospheric quasi‐biennial oscillation (QBO) and tropospheric Madden‐Julian oscillation (MJO), with MJO activity being stronger during the easterly phase than the westerly phase of the QBO. We assess the representation of this QBO‐MJO connection in 30 models participating in the Coupled Model Intercomparison Project 6. While some models reasonably simulate the QBO during boreal winter, none of them capture a difference in MJO activity between easterly and westerly QBO that is larger than that which would be expected from the random sampling of internal variability. The weak signal of the simulated QBO‐MJO connection may be due to the weaker amplitude of the QBO than observed, especially between 100 to 50 hPa. This weaker amplitude in the models is seen both in the QBO‐related zonal wind and temperature, the latter of which is thought to be critical for destabilizing tropical convection. 
    more » « less
  3. We propose a set of MJO teleconnection diagnostics that enables an objective evaluation of model simulations, a fair model-to-model comparison, and a consistent tracking of model improvement. Various skill metrics are derived from teleconnection diagnostics including five performance-based metrics that characterize the pattern, amplitude, east–west position, persistence, and consistency of MJO teleconnections and additional two process-oriented metrics that are designed to characterize the location and intensity of the anomalous Rossby wave source (RWS). The proposed teleconnection skill metrics are used to compare the characteristics of boreal winter MJO teleconnections (500-hPa geopotential height anomaly) over the Pacific–North America (PNA) region in 29 global climate models (GCMs). The results show that current GCMs generally produce MJO teleconnections that are stronger, more persistent, and extend too far to the east when compared to those observed in reanalysis. In general, models simulate more realistic teleconnection patterns when the MJO is in phases 2–3 or phases 7–8, which are characterized by a dipole convection pattern over the Indian Ocean and western to central Pacific. The higher model skill for phases 2, 7, and 8 may be due to these phases producing more consistent teleconnection patterns between individual MJO events than other phases, although the consistency is lower in most models than observed. Models that simulate realistic RWS patterns better reproduce MJO teleconnection patterns. 
    more » « less
  4. Abstract The Madden‐Julian oscillation (MJO) is the leading source of global subseasonal predictability; however, many dynamical forecasting systems struggle to predict MJO propagation through the Maritime Continent. Better understanding the biases in simulated physical processes associated with MJO propagation is the key to improve MJO prediction. In this study, MJO prediction skill, propagation processes, and mean state biases are evaluated in reforecasts from models participating in the Subseasonal Experiment (SubX) and Subseasonal to Seasonal (S2S) prediction projects. SubX and S2S reforecasts show MJO prediction skill out to 4.5 weeks based on the Real‐time Multivariate MJO index consistent with previous studies. However, a closer examination of these models' representation of MJO propagation through the Maritime Continent reveals that they fail to predict the MJO convection, associated circulations, and moisture advection processes beyond 10 days with most of models underestimating MJO amplitude. The biases in the MJO propagation can be partly associated with the following mean biases across the Indo‐Pacific: a drier low troposphere, excess surface precipitation, more frequent occurrence of light precipitation rates, and a transition to stronger precipitation rates at lower humidity than in observations. This indicates that deep convection occurs too frequently in models and is not sufficiently inhibited when tropospheric moisture is low, which is likely due to the representation of entrainment. 
    more » « less
  5. null (Ed.)
    Abstract Observational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection. 
    more » « less