Abstract In this paper we outline the application of decomposition to condensation defects and their fusion rules. Briefly, a condensation defect is obtained by gauging a higher‐form symmetry along a submanifold, and so there is a natural interplay with notions of decomposition, the statement thatd‐dimensional quantum field theories with global ‐form symmetries are equivalent to disjoint unions of other quantum field theories. We will also construct new (sometimes non‐invertible) defects, and compute their fusion products, again utilizing decomposition. An important role will be played in all these analyses by theta angles for gauged higher‐form symmetries, which can be used to select individual universes in a decomposition.
more »
« less
Undoing decomposition
In this paper we discuss gauging one-form symmetries in two-dimensional theories. The existence of a global one-form symmetry in two dimensions typically signals a violation of cluster decomposition — an issue resolved by the observation that such theories decompose into disjoint unions, a result that has been applied to, for example, Gromov–Witten theory and gauged linear sigma model phases. In this paper we describe how gauging one-form symmetries in two-dimensional theories can be used to select particular elements of that disjoint union, effectively undoing decomposition. We examine such gaugings explicitly in examples involving orbifolds, nonsupersymmetric pure Yang–Mills theories, and supersymmetric gauge theories in two dimensions. Along the way, we learn explicit concrete details of the topological configurations that path integrals sum over when gauging a one-form symmetry, and we also uncover “hidden” one-form symmetries.
more »
« less
- Award ID(s):
- 1720321
- PAR ID:
- 10147601
- Date Published:
- Journal Name:
- International Journal of Modern Physics A
- Volume:
- 34
- Issue:
- 35
- ISSN:
- 0217-751X
- Page Range / eLocation ID:
- 1950233
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> In this paper we discuss gauging noninvertible zero-form symmetries in two dimensions, extending our previous work. Specifically, in this work we discuss more general gauged noninvertible symmetries in which the noninvertible symmetry is not multiplicity free, and discuss the case of Rep(A4) in detail. We realize Rep(A4) gaugings for thec= 1 CFT at the exceptional point in the moduli space and find new self-duality under gauging a certain non-group algebra object, leading to a larger noninvertible symmetry Rep(SL(2, ℤ3)). We also discuss more general examples of decomposition in two-dimensional gauge theories with trivially-acting gauged noninvertible symmetries.more » « less
-
A<sc>bstract</sc> In this paper, we discuss how gauging one-form symmetries in Chern-Simons theories is implemented in an A-twisted topological open string theory. For example, the contribution from a fixed H/Z bundle on a three-manifold M, arising in a BZ gauging of H Chern-Simons, for Z a finite subgroup of the center of H, is described by an open string worldsheet theory whose bulk is a sigma model with target a Z-gerbe (a bundle of one-form symmetries) over T∗M, of characteristic class determined by the H/Z bundle. We give a worldsheet picture of the decomposition of one-form-symmetry-gauged Chern-Simons in three dimensions, and we describe how a target-space constraint on bundles arising in the gauged Chern-Simons theory has a natural worldsheet realization. Our proposal provides examples of the expected correspondence between worldsheet global higher-form symmetries, and target-space gauged higher-form symmetries.more » « less
-
A bstract This paper describes a generalization of decomposition in orbifolds. In general terms, decomposition states that two-dimensional orbifolds and gauge theories whose gauge groups have trivially-acting subgroups decompose into disjoint unions of theories. However, decomposition can be, at least naively, broken in orbifolds if the orbifold has discrete torsion in the trivially-acting subgroup. (Formally, this breaks finite global one-form symmetries.) Nevertheless, even in such cases, one still sees rudiments of decomposition. In this paper, we generalize decomposition in orbifolds to include such examples of discrete torsion, which we check in numerous examples. Our analysis includes as special cases (and in one sense generalizes) quantum symmetries of abelian orbifolds.more » « less
-
A<sc>bstract</sc> In this paper, we test and extend a proposal of Gu, Pei, and Zhang for an application of decomposition to three-dimensional theories with one-form symmetries and to quantum K theory. The theories themselves do not decompose, but, OPEs of parallel one-dimensional objects (such as Wilson lines) and dimensional reductions to two dimensions do decompose, sometimes in two independent ways. We apply this to extend conjectures for quantum K theory rings of gerbes (realized by three-dimensional gauge theories with one-form symmetries) via both orbifold partition functions and gauged linear sigma models.more » « less
An official website of the United States government

