skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A time accurate, adaptive discretization for fluid flow problems
This report presents a low computational and cognitive complexity, stable, time accurate and adaptive method for the Navier-Stokes equations. The improved method requires a minimally intrusive modification to an existing program based on the fully implicit / backward Euler time discretization, does not add to the computational complexity, and is conceptually simple. The backward Euler approximation is simply post-processed with a two-step, linear time filter. The time filter additionally removes the overdamping of Backward Euler while remaining unconditionally energy stable, proven herein. Even for constant stepsizes, the method does not reduce to a standard / named time stepping method but is related to a known 2-parameter family of A-stable, two step, second order methods. Numerical tests confirm the predicted convergence rates and the improved predictions of flow quantities such as drag and lift.  more » « less
Award ID(s):
1817542
PAR ID:
10147662
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International journal of numerical analysis and modeling
Volume:
17
Issue:
2
ISSN:
2617-8710
Page Range / eLocation ID:
254-280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work focuses on the development of a novel, strongly-coupled, second-order partitioned method for fluid–poroelastic structure interaction. The flow is assumed to be viscous and incompressible, and the poroelastic material is described using the Biot model. To solve this problem, a numerical method is proposed, based on Robin interface conditions combined with the refactorization of the Cauchy’s one-legged ‘ϑ-like’ method. This approach allows the use of the mixed formulation for the Biot model. The proposed algorithm consists of solving a sequence of Backward Euler–Forward Euler steps. In the Backward Euler step, the fluid and poroelastic structure problems are solved iteratively until convergence. Then, the Forward Euler problems are solved using equivalent linear extrapolations. We prove that the iterative procedure in the Backward Euler step is convergent, and that the converged method is stable whenϑ∈ [1/2, 1]. Numerical examples are used to explore convergence rates with varying parameters used in our scheme, and to compare our method to a monolithic method based on Nitsche’s coupling approach. 
    more » « less
  2. This paper develops, analyzes and tests a time-accurate partitioned method for the Stokes-Darcy equations. The method combines a time filter and Backward Euler scheme, is second order accurate and provide, at no extra complexity, an estimated the temporal error. This approach post-processes the solutions of Backward Euler scheme by adding three lines to original codes to increase the time accuracy from first order to second order. We prove long time stability and error estimates of Backward Euler plus time filter with constant time stepsize. Moreover, we extend the approach to variable time stepsize and construct adaptive algorithms. Numerical tests show convergence of our method and support the theoretical analysis. 
    more » « less
  3. null (Ed.)
    Abstract Adaptive time stepping methods for metastable dynamics of the Allen–Cahn and Cahn–Hilliard equations are investigated in the spatially continuous, semi-discrete setting. We analyse the performance of a number of first and second order methods, formally predicting step sizes required to satisfy specified local truncation error $$\sigma $$ σ in the limit of small length scale parameter $$\epsilon \rightarrow 0$$ ϵ → 0 during meta-stable dynamics. The formal predictions are made under stability assumptions that include the preservation of the asymptotic structure of the diffuse interface, a concept we call profile fidelity. In this setting, definite statements about the relative behaviour of time stepping methods can be made. Some methods, including all so-called energy stable methods but also some fully implicit methods, require asymptotically more time steps than others. The formal analysis is confirmed in computational studies. We observe that some provably energy stable methods popular in the literature perform worse than some more standard schemes. We show further that when Backward Euler is applied to meta-stable Allen–Cahn dynamics, the energy decay and profile fidelity properties for these discretizations are preserved for much larger time steps than previous analysis would suggest. The results are established asymptotically for general interfaces, with a rigorous proof for radial interfaces. It is shown analytically and computationally that for most reaction terms, Eyre type time stepping performs asymptotically worse due to loss of profile fidelity. 
    more » « less
  4. Abstract This paper concentrates on a priori error estimates of two monolithic schemes for Biot's consolidation model based on the three‐field formulation introduced by Oyarzúa et al. (SIAM J Numer Anal, 2016). The spatial discretizations are based on the Taylor–Hood finite elements combined with Lagrange elements for the three primary variables. We employ two different schemes to discretize the time domain. One uses the backward Euler method, and the other applies the combination of the backward Euler and Crank‐Nicolson methods. A priori error estimates show that both schemes are unconditionally convergent with optimal error orders. Detailed numerical experiments are presented to validate the theoretical analysis. 
    more » « less
  5. This paper is concerned with the optimized Schwarz waveform relaxation method and Ventcel transmission conditions for the linear advection-diffusion equation. A mixed formulation is considered in which the flux variable represents both diffusive and advective flux, and Lagrange multipliers are introduced on the interfaces between nonoverlapping subdomains to handle tangential derivatives in the Ventcel conditions. A space-time interface problem is formulated and is solved iteratively. Each iteration involves the solution of time-dependent problems with Ventcel boundary conditions in the subdomains. The subdomain problems are discretized in space by a mixed hybrid finite element method based on the lowest-order Raviart-Thomas space and in time by the backward Euler method. The proposed algorithm is fully implicit and enables different time steps in the subdomains. Numerical results with discontinuous coefficients and various Peclét numbers validate the accuracy of the method with nonconforming time grids and confirm the improved convergence properties of Ventcel conditions over Robin conditions. 
    more » « less