Let
In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. the
- Award ID(s):
- 2010107
- PAR ID:
- 10498236
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Mathematics of Computation
- Volume:
- 92
- Issue:
- 344
- ISSN:
- 0025-5718
- Page Range / eLocation ID:
- 2475 to 2513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
be analytic on with for some constants and and all . We show that the median estimate of under random linear scrambling with points converges at the rate for any . We also get a super-polynomial convergence rate for the sample median of random linearly scrambled estimates, when is bounded away from zero. When has a ’th derivative that satisfies a -Hölder condition then the median of means has error for any , if as . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number. -
In this paper we derive the best constant for the following
-type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively. -
We show that for primes
with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of . -
This is the first of our papers on quasi-split affine quantum symmetric pairs
, focusing on the real rank one case, i.e., equipped with a diagram involution. We construct explicitly a relative braid group action of type on the affine quantum group . Real and imaginary root vectors for are constructed, and a Drinfeld type presentation of is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine quantum groups in the sequels. -
Let
be a bounded -Reifenberg flat domain, with small enough, possibly with locally infinite surface measure. Assume also that is an NTA (non-tangentially accessible) domain as well and denote by and the respective harmonic measures of and with poles . In this paper we show that the condition that is equivalent to being a chord-arc domain with inner unit normal belonging to .