We show that if and are linear transformations from to satisfying certain mild conditions, then, for any finite subset of , This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of and . As an application, we prove a lower bound for when is a finite set of real numbers and is an algebraic number. In particular, when is of the form for some , each taken as small as possible for such a representation, we show that This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case .
more »
« less
Uniform stability for local discontinuous Galerkin methods with implicit-explicit Runge-Kutta time discretizations for linear convection-diffusion equation
In this paper, we consider the linear convection-diffusion equation in one dimension with periodic boundary conditions, and analyze the stability of fully discrete methods that are defined with local discontinuous Galerkin (LDG) methods in space and several implicit-explicit (IMEX) Runge-Kutta methods in time. By using the forward temporal differences and backward temporal differences, respectively, we establish two general frameworks of the energy-method based stability analysis. From here, the fully discrete schemes being considered are shown to have monotonicity stability, i.e. the norm of the numerical solution does not increase in time, under the time step condition , with the convection coefficient , the diffusion coefficient , and the mesh size . The function depends on the specific IMEX temporal method, the polynomial degree of the discrete space, and the mesh regularity parameter. Moreover, the time step condition becomes in the convection-dominated regime and it becomes in the diffusion-dominated regime. The result is improved for a first order IMEX-LDG method. To complement the theoretical analysis, numerical experiments are further carried out, leading to slightly stricter time step conditions that can be used by practitioners. Uniform stability with respect to the strength of the convection and diffusion effects can especially be relevant to guide the choice of time step sizes in practice, e.g. when the convection-diffusion equations are convection-dominated in some sub-regions.
more »
« less
- Award ID(s):
- 2010107
- PAR ID:
- 10498236
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Mathematics of Computation
- Volume:
- 92
- Issue:
- 344
- ISSN:
- 0025-5718
- Page Range / eLocation ID:
- 2475 to 2513
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness.more » « less
-
Let be analytic on with for some constants and and all . We show that the median estimate of under random linear scrambling with points converges at the rate for any . We also get a super-polynomial convergence rate for the sample median of random linearly scrambled estimates, when is bounded away from zero. When has a ’th derivative that satisfies a -Hölder condition then the median of means has error for any , if as . The proof techniques use methods from analytic combinatorics that have not previously been applied to quasi-Monte Carlo methods, most notably an asymptotic expression from Hardy and Ramanujan on the number of partitions of a natural number.more » « less
-
In this paper we derive the best constant for the following -type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively.more » « less
-
Let be a finite unramified extension, a continuous representation, and a tame inertial type of dimension . We explicitly determine, under mild regularity conditions on , the potentially crystalline deformation ring in parallel Hodge–Tate weights and inertial type when theshapeof with respect to has colength at most one. This has application to the modularity of a class of shadow weights in the weight part of Serre’s conjecture. Along the way we make unconditional the local-global compatibility results of Park and Qian [Mém. Soc. Math. Fr. (N.S.) 173 (2022), pp. vi+150].more » « less
An official website of the United States government

